Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study on electronic structure and optical properties of anatase TiO2 codoped with nitrogen and iron

Gao Pan Liu Qing-Ju Zhang Xue-Jun

First-principles study on electronic structure and optical properties of anatase TiO2 codoped with nitrogen and iron

Gao Pan, Liu Qing-Ju, Zhang Xue-Jun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The crystal structure, electronic structure and optical properties of nitrogen and iron codoped anatase TiO2 were studied by using the plane-wave ultrasoft pesudopotentials method based on density functional theory. The calculated results show that the octahedral dipole moments in nitrogen and iron codoped TiO2 increase due to the changes in lattice parameters, bond length and charge of atoms, which is very effective for the separation of photoexcited electron-hole pairs and the improvement of the photocatalytic activity of TiO2. Some impurity energy levels of codoped TiO2 are below the conduction band minimum, and others are above the valence band maximum. The distance between them is narrowed, which results in the redshift of the optical absorption edges to visible-light region. These impurity energy levels can reduce the recombination rate of photoexcited carriers and improve the photocatalytic efficiency of TiO2. Compared with that of Fe doped TiO2, for the codoped TiO2, the density of states peak of impurity energy levels above the valence band maximum increase apparently, which increases the electronic transition probability from the impurity energy levels to the conduction band, and improves the solar energy utilization. If the impurity level is not taken into account, compared with that of pure TiO2, the CB edge position and the VB edge position of codoped TiO2 is only slightly changed, it means that the strong redox capacity of codoping photocatalysts is still excellent.
    • Funds:
    [1]

    Kanisaka H, A dachi T, Yamashita K 2005 J. Chem. Phys. 123 84704

    [2]

    Chen X, Mao S 2007 Chem. Rev. 107 2891

    [3]

    Khan S U M, Al-Shahry M, Ingler W B 2002 Science 297 2243

    [4]

    Yu J X,Fu M,Ji G F, Chen X R 2009 Chin. Phys. B 18 269

    [5]

    Zhu J, Yu J X ,Wang Y J, Chen X R, Jing F Q 2008 Chin. Phys. B 17 2216

    [6]

    Hou Q Y, Zhang Y, Zhang T 2008 Acta Phys. Sin. 57 1862 (in Chinese)[侯清玉、张 跃、张 涛 2008 物理学报 57 1862]

    [7]

    Lin F, Zheng F W,Ouyang F P 2009 Acta Phys. Sin. 58 193 (in Chinese) [林 峰、郑法伟、欧阳方平 2009 物理学报 58 193]

    [8]

    Sun H W, Zhang X J, Zhang Z Y, Chen Y S, Crittenden J C 2009 Environ. Pollut. 157 1165

    [9]

    Chen F, Zou W W, Qu W W, Zhang J L 2009 Catal. Commun. 10 1510

    [10]

    Ananpattarachai J, Kajitvichyanukul P, Seraphin S 2009 J. Hazard Mater.168 253

    [11]

    Park Y, Kim W, Park H, Tachikawa T, Majima T, Choi W 2009 Appl. Catal. B 191 355

    [12]

    Yu H Z, Peng J B, Liu J C 2009 Acta Phys. Sin. 58 669 (in Chinese) [於黄忠、彭俊彪、刘金成 2009 物理学报 58 669]

    [13]

    Hou Q Y, Zhang Y, Zhang T 2008 Acta Phys. Sin. 57 3155(in Chinese) [侯清玉、张 跃、张 涛 2008 物理学报 57 3155]

    [14]

    Liang L Y, Dai S Y, Fang X Q, Hu L H 2008 Acta Phys. Sin. 57 1956 (in Chinese) [梁林云、戴松元、方霞琴、胡林华 2008 物理学报 57 1956]

    [15]

    Ma X G, Jiang J J, Liang P 2008 Acta Phys. Sin. 57 3120 (in Chinese)[马新国、江建军、梁 培 2008 物理学报 57 3120]

    [16]

    Choi W , Termin A, Hoffmann M R 1994 J. Phys. Chem. 98 13669

    [17]

    Wang C, Bahnemmannt D, Dohrmann J 2000 Chem. Commun. 16 1539

    [18]

    Wang C, Li Q, Wang R 2004 J. Mater. Sci. 39 1899

    [19]

    Zhang Z, Wang C, Zakaria R, Ying J 1998 J. Phys. Chem. B 102 10871

    [20]

    Asahi R, Morikawa T, Ohwaki T, Aoki O K, Taga Y 2001 Science 293 269

    [21]

    Luo H, Takata T, Lee Y, Zhao J,Domen K,Yan Y 2004 Chem. Mater. 16 846

    [22]

    Shi J W, Zheng J T, Hu Y, Zhao Y C 2007 Mater. Chem. Phys. 106 247

    [23]

    Liu H Y, Gao L 2004 Chem. Lett. 33 730

    [24]

    Chen Q L, Tang C Q 2009 Acta Phys. Chim. Sin. 25 915 (in Chinese) [陈琦丽、唐超群2009 物理化学学报 25 915]

    [25]

    Xie Y, Li Y Z, Zhao X J 2007 J. Mole Cata. A 277 119

    [26]

    Gu D E, Yang B C, Hu Y D 2008 Cataly. Commun. 9 1472

    [27]

    Huang L H, Sun C, Liu Y L 2007 Appl. Surf. Sci. 253 7029

    [28]

    Pelaez M, Cruz A , Stathato S, Falaras P, Dionysiou D 2009 Catal.Today 144 19

    [29]

    Huang D S, Chen C F, Li Y H, Zeng R J 2007 Chin. J. Inorg. Chem. 23 728 (in Chinese) [黄东升、陈朝凤、李玉花、曾人杰 2007 无机化学学报 23 728]

    [30]

    Yang X X, Cao C D, Erickson L, Hohn K, Maghirang R, Klabunde K 2009 Appl. Cataly. B 91 657

    [31]

    Segall M D, Lindan P J D, Probert M J, Pickard C J,Hasnip P J,Clark S J, Payne M C 2002 J. Phys. Cond .Matt. 14 2717

    [32]

    Keiji W, Masatoshi S, Hideaki T 2001 Electrochemistry 69 407

    [33]

    Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566

    [34]

    Perdew J P, Zunger A 1981 Phy. Rev. B 23 5048

    [35]

    Zhao Z Y, Liu Q J, Zhu Z Q, Zhang J 2008 Acta Phys. Sin. 57 3760 (in Chinese) [赵宗彦、柳清菊、朱忠其、张 瑾 2008物理学报 57 3760]

    [36]

    Zhao Z Y, Liu Q J, Zhu Z Q, Zhang J, Liu Q 2008 J. Funct. Mater. 39 953 (in Chinese)[赵宗彦、柳清菊、朱忠其、张 瑾、刘 强 2008 功能材料 39 953]

    [37]

    Cui X Y, Medvedeva J E, Delley B, Freeman A J, Newman N, Stampfl C 2005 Phys . Rev. Lett. 95 256404

    [38]

    Sato J, Kobayashi H, Inoue Y 2003 J. Phys. Chem. B 107 7970

    [39]

    Zhang Y, Tang C Q, Dai J 2005 Acta Phys. Sin. 54 323 (in Chinese) [张 勇、唐超群、戴 君 2005 物理学报 54 323]

    [40]

    Tang J W, Ye J H 2005 Chem. Phys. Lett. 410 104

    [41]

    Zhao Z Y, Liu Q J 2008 J. Phys. D 41 025105

    [42]

    Xun L, Dai L, Ma X G, Tang C Q, Tang D H 2007 Acta Phys. Sin. 56 1048(in Chinese) [徐 凌、戴 磊、马新国、唐超群、唐代海2007 物理学报 56 1048]

    [43]

    Peng L P, Xu L, Yin J W 2007 Acta Phys. Sin. 56 1585(in Chinese)[彭丽萍、徐 凌、尹建武 2007 物理学报 56 1585]

    [44]

    Jellison G E, Boatner L A, Budai J D, Budai J D, Jeong B S , Norton D P 2003 J. Appl. Phys. 93 9537

    [45]

    Zhu J F, Chen F, Zhang J l, Chen H J, Anpo M 2006 J. Photochem. Photobiol. A 180 196

    [46]

    Ghasemi S, Rahimnejad S, Setayesh S R, Rohani S, Gholami M R 2009 J. Hazard Mater. 172 1573

    [47]

    Linsebigler A L, Lu G Q, Yates J T 1995 Chem. Rev. 95 735

    [48]

    Kim Y I, Atherton S J, Brigham E S, Mallouk T E 1993 Phys.Chem. 97 11802

  • [1]

    Kanisaka H, A dachi T, Yamashita K 2005 J. Chem. Phys. 123 84704

    [2]

    Chen X, Mao S 2007 Chem. Rev. 107 2891

    [3]

    Khan S U M, Al-Shahry M, Ingler W B 2002 Science 297 2243

    [4]

    Yu J X,Fu M,Ji G F, Chen X R 2009 Chin. Phys. B 18 269

    [5]

    Zhu J, Yu J X ,Wang Y J, Chen X R, Jing F Q 2008 Chin. Phys. B 17 2216

    [6]

    Hou Q Y, Zhang Y, Zhang T 2008 Acta Phys. Sin. 57 1862 (in Chinese)[侯清玉、张 跃、张 涛 2008 物理学报 57 1862]

    [7]

    Lin F, Zheng F W,Ouyang F P 2009 Acta Phys. Sin. 58 193 (in Chinese) [林 峰、郑法伟、欧阳方平 2009 物理学报 58 193]

    [8]

    Sun H W, Zhang X J, Zhang Z Y, Chen Y S, Crittenden J C 2009 Environ. Pollut. 157 1165

    [9]

    Chen F, Zou W W, Qu W W, Zhang J L 2009 Catal. Commun. 10 1510

    [10]

    Ananpattarachai J, Kajitvichyanukul P, Seraphin S 2009 J. Hazard Mater.168 253

    [11]

    Park Y, Kim W, Park H, Tachikawa T, Majima T, Choi W 2009 Appl. Catal. B 191 355

    [12]

    Yu H Z, Peng J B, Liu J C 2009 Acta Phys. Sin. 58 669 (in Chinese) [於黄忠、彭俊彪、刘金成 2009 物理学报 58 669]

    [13]

    Hou Q Y, Zhang Y, Zhang T 2008 Acta Phys. Sin. 57 3155(in Chinese) [侯清玉、张 跃、张 涛 2008 物理学报 57 3155]

    [14]

    Liang L Y, Dai S Y, Fang X Q, Hu L H 2008 Acta Phys. Sin. 57 1956 (in Chinese) [梁林云、戴松元、方霞琴、胡林华 2008 物理学报 57 1956]

    [15]

    Ma X G, Jiang J J, Liang P 2008 Acta Phys. Sin. 57 3120 (in Chinese)[马新国、江建军、梁 培 2008 物理学报 57 3120]

    [16]

    Choi W , Termin A, Hoffmann M R 1994 J. Phys. Chem. 98 13669

    [17]

    Wang C, Bahnemmannt D, Dohrmann J 2000 Chem. Commun. 16 1539

    [18]

    Wang C, Li Q, Wang R 2004 J. Mater. Sci. 39 1899

    [19]

    Zhang Z, Wang C, Zakaria R, Ying J 1998 J. Phys. Chem. B 102 10871

    [20]

    Asahi R, Morikawa T, Ohwaki T, Aoki O K, Taga Y 2001 Science 293 269

    [21]

    Luo H, Takata T, Lee Y, Zhao J,Domen K,Yan Y 2004 Chem. Mater. 16 846

    [22]

    Shi J W, Zheng J T, Hu Y, Zhao Y C 2007 Mater. Chem. Phys. 106 247

    [23]

    Liu H Y, Gao L 2004 Chem. Lett. 33 730

    [24]

    Chen Q L, Tang C Q 2009 Acta Phys. Chim. Sin. 25 915 (in Chinese) [陈琦丽、唐超群2009 物理化学学报 25 915]

    [25]

    Xie Y, Li Y Z, Zhao X J 2007 J. Mole Cata. A 277 119

    [26]

    Gu D E, Yang B C, Hu Y D 2008 Cataly. Commun. 9 1472

    [27]

    Huang L H, Sun C, Liu Y L 2007 Appl. Surf. Sci. 253 7029

    [28]

    Pelaez M, Cruz A , Stathato S, Falaras P, Dionysiou D 2009 Catal.Today 144 19

    [29]

    Huang D S, Chen C F, Li Y H, Zeng R J 2007 Chin. J. Inorg. Chem. 23 728 (in Chinese) [黄东升、陈朝凤、李玉花、曾人杰 2007 无机化学学报 23 728]

    [30]

    Yang X X, Cao C D, Erickson L, Hohn K, Maghirang R, Klabunde K 2009 Appl. Cataly. B 91 657

    [31]

    Segall M D, Lindan P J D, Probert M J, Pickard C J,Hasnip P J,Clark S J, Payne M C 2002 J. Phys. Cond .Matt. 14 2717

    [32]

    Keiji W, Masatoshi S, Hideaki T 2001 Electrochemistry 69 407

    [33]

    Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566

    [34]

    Perdew J P, Zunger A 1981 Phy. Rev. B 23 5048

    [35]

    Zhao Z Y, Liu Q J, Zhu Z Q, Zhang J 2008 Acta Phys. Sin. 57 3760 (in Chinese) [赵宗彦、柳清菊、朱忠其、张 瑾 2008物理学报 57 3760]

    [36]

    Zhao Z Y, Liu Q J, Zhu Z Q, Zhang J, Liu Q 2008 J. Funct. Mater. 39 953 (in Chinese)[赵宗彦、柳清菊、朱忠其、张 瑾、刘 强 2008 功能材料 39 953]

    [37]

    Cui X Y, Medvedeva J E, Delley B, Freeman A J, Newman N, Stampfl C 2005 Phys . Rev. Lett. 95 256404

    [38]

    Sato J, Kobayashi H, Inoue Y 2003 J. Phys. Chem. B 107 7970

    [39]

    Zhang Y, Tang C Q, Dai J 2005 Acta Phys. Sin. 54 323 (in Chinese) [张 勇、唐超群、戴 君 2005 物理学报 54 323]

    [40]

    Tang J W, Ye J H 2005 Chem. Phys. Lett. 410 104

    [41]

    Zhao Z Y, Liu Q J 2008 J. Phys. D 41 025105

    [42]

    Xun L, Dai L, Ma X G, Tang C Q, Tang D H 2007 Acta Phys. Sin. 56 1048(in Chinese) [徐 凌、戴 磊、马新国、唐超群、唐代海2007 物理学报 56 1048]

    [43]

    Peng L P, Xu L, Yin J W 2007 Acta Phys. Sin. 56 1585(in Chinese)[彭丽萍、徐 凌、尹建武 2007 物理学报 56 1585]

    [44]

    Jellison G E, Boatner L A, Budai J D, Budai J D, Jeong B S , Norton D P 2003 J. Appl. Phys. 93 9537

    [45]

    Zhu J F, Chen F, Zhang J l, Chen H J, Anpo M 2006 J. Photochem. Photobiol. A 180 196

    [46]

    Ghasemi S, Rahimnejad S, Setayesh S R, Rohani S, Gholami M R 2009 J. Hazard Mater. 172 1573

    [47]

    Linsebigler A L, Lu G Q, Yates J T 1995 Chem. Rev. 95 735

    [48]

    Kim Y I, Atherton S J, Brigham E S, Mallouk T E 1993 Phys.Chem. 97 11802

  • [1] Li Pei-Juan, Zhou Wei-Wei, Tang Yuan-Hao, Zhang Hua, Shi Si-Qi. Electronic structure,optical and lattice dynamical properties of CeO2:A first-principles study. Acta Physica Sinica, 2010, 59(5): 3426-3431. doi: 10.7498/aps.59.3426
    [2] Jiao Zhao-Yong, Guo Yong-Liang, Niu Yi-Jun, Zhang Xian-Zhou. The first principle study of electronic and optical properties of defect chalcopyrite XGa2S4 (X=Zn, Cd, Hg). Acta Physica Sinica, 2013, 62(7): 073101. doi: 10.7498/aps.62.073101
    [3] Deng Jiao-Jiao, Liu Bo, Gu Mu, Liu Xiao-Lin, Huang Shi-Ming, Ni Chen. First principles calculation of electronic structures and optical properties for -CuX(X = Cl, Br, I). Acta Physica Sinica, 2012, 61(3): 036105. doi: 10.7498/aps.61.036105
    [4] Wang Yin, Feng Qing, Wang Wei-Hua, Yue Yuan-Xia. First-principles study on the electronic and optical property of C-Zn co-doped anatase TiO2. Acta Physica Sinica, 2012, 61(19): 193102. doi: 10.7498/aps.61.193102
    [5] Guo Jian-Yun, Chen Jing-Zhong, Zheng Guang, He Kai-Hua. First-principles study on electronic structure and optical properties of Al and Mg doped GaN. Acta Physica Sinica, 2008, 57(6): 3740-3746. doi: 10.7498/aps.57.3740
    [6] Liang Wei-Hua, Ding Xue-Cheng, Chu Li-Zhi, Deng Ze-Chao, Guo Jian-Xin, Wu Zhuan-Hua, Wang Ying-Long. First-principles study of electronic and optical properties of Ni-doped silicon nanowires. Acta Physica Sinica, 2010, 59(11): 8071-8077. doi: 10.7498/aps.59.8071
    [7] Chen Qiu-Yun, Lai Xin-Chun, Wang Xiao-Ying, Zhang Yong-Bin, Tan Shi-Yong. First-principles study of the electronic structure and optical properties of UO2. Acta Physica Sinica, 2010, 59(7): 4945-4949. doi: 10.7498/aps.59.4945
    [8] Chen Hai-Chuan, Yang Li-Jun. First-principles calculations of electronic structure, optical and elastic properties of LiGaX2(X=S, Se, Te). Acta Physica Sinica, 2011, 60(1): 014207. doi: 10.7498/aps.60.014207
    [9] Duan Man-Yi, Zhou Hai-Ping, Shen Yi-Bin, Chen Qing-Yun, Ding Ying-Chun, Zhu Wen-Jun, Xu Ming. First-principles study on the electronic structure and optical properties of ZnO doped with transition metal and N. Acta Physica Sinica, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
    [10] Xie Zhi, Cheng Wen-Dan. First-principles study of electronic structure and optical properties of TiO2 nanotubes. Acta Physica Sinica, 2014, 63(24): 243102. doi: 10.7498/aps.63.243102
    [11] Bi Yan-Jun, Guo Zhi-You, Sun Hui-Qing, Lin Zhu, Dong Yu-Cheng. The electronic structure and optical properties of Co and Mn codoped ZnO from first-principle study. Acta Physica Sinica, 2008, 57(12): 7800-7805. doi: 10.7498/aps.57.7800
    [12] Wang Ying-Long, Wang Xiu-Li, Liang Wei-Hua, Guo Jian-Xin, Ding Xue-Cheng, Chu Li-Zhi, Deng Ze-Chao, Fu Guang-Sheng. First principles study of electronic and optical properties of Er-doped silicon nanoparticles with different densities. Acta Physica Sinica, 2011, 60(12): 127302. doi: 10.7498/aps.60.127302
    [13] Zhao Bai-Qiang, Zhang Yun, Qiu Xiao-Yan, Wang Xue-Wei. First-principles study on the electronic structures and optical properties of Cu, Fe doped LiNbO_3 crystals. Acta Physica Sinica, 2016, 65(1): 014212. doi: 10.7498/aps.65.014212
    [14] Xu Da-Qing, Zhao Zi-Han, Li Pei-Xian, Wang Chao, Zhang Yan, Liu Shu-Lin, Tong Jun. First-principle study on electronic structures, magnetic, and optical properties of different valence Mn ions doped InN. Acta Physica Sinica, 2018, 67(8): 087501. doi: 10.7498/aps.67.20172504
    [15] Cheng Xu-Dong, Wu Hai-Xin, Tang Xiao-Lu, Wang Zhen-You, Xiao Rui-Chun, Huang Chang-Bao, Ni You-Bao. First principles study on the electronic structures and optical properties of Na2Ge2Se5. Acta Physica Sinica, 2014, 63(18): 184208. doi: 10.7498/aps.63.184208
    [16] Jiao Zhao-Yong, Yang Ji-Fei, Zhang Xian-Zhou, Ma Shu-Hong, Guo Yong-Liang. Theoretical investigation of elastic, electronic, and optical properties of zinc-blende structure GaN under high pressure. Acta Physica Sinica, 2011, 60(11): 117103. doi: 10.7498/aps.60.117103
    [17] Zhang Li-Li,  Xia Tong,  Liu Gui-An,  Lei Bo-Cheng,  Zhao Xu-Cai,  Wang Shao-Xia,  Huang Yi-Neng. Electronic and optical properties of n-pr co-doped anatase TiO2 from first-principles. Acta Physica Sinica, 2019, 68(1): 017401. doi: 10.7498/aps.68.20181531
    [18] Wu Hong-Li, Zhao Xin-Qing, Gong Sheng-Kai. Effect of Nb doping on electronic structure of TiO2/NiTi interface: A first-principle study. Acta Physica Sinica, 2008, 57(12): 7794-7799. doi: 10.7498/aps.57.7794
    [19] Study on the electronic structure and photocatalytic properties of a novel monolayer TiO2*. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20200631
    [20] Wu Hong-Li, Zhao Xin-Qing, Gong Sheng-Kai. Effect of Nb on electronic structure of NiTi intermetallic compound: A first-principles study. Acta Physica Sinica, 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
  • Citation:
Metrics
  • Abstract views:  5345
  • PDF Downloads:  1655
  • Cited By: 0
Publishing process
  • Received Date:  13 October 2009
  • Accepted Date:  15 November 2009
  • Published Online:  15 July 2010

First-principles study on electronic structure and optical properties of anatase TiO2 codoped with nitrogen and iron

  • 1. (1)Key Laboratory of Nanomaterials & Nanotechnology of Yunnan Province, College of Physical Science and Technology, Yunnan University, Kunming 650091, China; (2)Key Laboratory of Nanomaterials & Nanotechnology of Yunnan Province, College of Physical Science and Technology, Yunnan University, Kunming 650091, China; Department of Physics and Electric Information Engineering, Hunan City University, Yiyang 413000, Ch

Abstract: The crystal structure, electronic structure and optical properties of nitrogen and iron codoped anatase TiO2 were studied by using the plane-wave ultrasoft pesudopotentials method based on density functional theory. The calculated results show that the octahedral dipole moments in nitrogen and iron codoped TiO2 increase due to the changes in lattice parameters, bond length and charge of atoms, which is very effective for the separation of photoexcited electron-hole pairs and the improvement of the photocatalytic activity of TiO2. Some impurity energy levels of codoped TiO2 are below the conduction band minimum, and others are above the valence band maximum. The distance between them is narrowed, which results in the redshift of the optical absorption edges to visible-light region. These impurity energy levels can reduce the recombination rate of photoexcited carriers and improve the photocatalytic efficiency of TiO2. Compared with that of Fe doped TiO2, for the codoped TiO2, the density of states peak of impurity energy levels above the valence band maximum increase apparently, which increases the electronic transition probability from the impurity energy levels to the conduction band, and improves the solar energy utilization. If the impurity level is not taken into account, compared with that of pure TiO2, the CB edge position and the VB edge position of codoped TiO2 is only slightly changed, it means that the strong redox capacity of codoping photocatalysts is still excellent.

Reference (48)

Catalog

    /

    返回文章
    返回