Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preliminary investigation on the method of determining electron mobility of tris (8-hydroxyquinolinato) aluminum by space charge limited current

Luo Yang Duan Yu Chen Ping Zang Chun-Liang Xie Yue Zhao Yi Liu Shi-Yong

Preliminary investigation on the method of determining electron mobility of tris (8-hydroxyquinolinato) aluminum by space charge limited current

Luo Yang, Duan Yu, Chen Ping, Zang Chun-Liang, Xie Yue, Zhao Yi, Liu Shi-Yong
PDF
Get Citation
  • The charge-carrier mobility of an organic semiconducting material determines the material potential applications in devices. The investigation on mobility of organic material plays a significant role in improving the performance of organic device, such as organic light emitting diode, organic solar cell and organic thin film transistor. In this paper, we employ the space charge limited current (SCLC) method to evaluate the electron mobility of the controlled device based on tris (8-hydroxyquinolinato) aluminum (Alq3). The zero-field mobilities and field-dependent factors of the four devices are fitted respectively. The results show that depositing Al as top-electrode onto buffer layer LiF (1 nm) and Alq3 (100 nm) can significantly improve the the zero-field mobility and field-dependent factor of Alq3. The reason for that is that LiF could strengthen the complex reaction between Al and Alq3 to form Li+1Alq-1 particles, which leads to the enhanced ohmic injection and electron injection.
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2011AA03A110), the National Basic Research Program of China (Grant No. 2010CB327701), the National Natural Science Foundation of China (Grant Nos. 60706018, 60906021, 60977024, 60876032, 60907013), the Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20070183088), and Scientific and Technological Developing Scheme of Jilin Province, China (Grant No. 201101034).
    [1]

    Di C A, Yu G, Liu Y Q, Xu X J, Song Y B, Zhu D B 2007 Appl. Phys. Lett. 90 133508

    [2]

    Chen Z J, Yu J S, Sakuratani Y, Li M R, Sone M, Miyata S, Watanabe T, Wang X Q, Sato H 2001 J. Appl. Phys. 89 7895

    [3]

    Sun Q J, Xu Z, Zhao S L, Zhang F J, Gao L Y, Tian X Y, Wang Y S 2009 Acta Phys. Sin. 59 8125 (in Chinese) [孙钦军, 徐征, 赵谡玲, 张福俊, 高利岩, 田雪雁, 王永生 2009 物理学报 59 8125]

    [4]

    Ong K H, Lim S L, Tan H S, Wong H K, Li J, Ma Z, Moh L C H, Lim S H, Mello J C D, Chen Z K 2011 Adv. Mater. 23 1409

    [5]

    Xu M, Peng J B 2009 Acta Phys. Sin. 59 2136 (in Chinese) [徐苗, 彭俊彪 2009 物理学报 59 2136]

    [6]

    Blom P W M, De Jong M J M, Vleggaar J J M 1996 Appl. Phys. Lett. 68 3308

    [7]

    Bozano L, Carter S A, Scott J C, Malliaras G G, Brock P J 1999 Appl. Phys. Lett. 74 1132

    [8]

    Yasuda T, Yamaguchi Y, Zou D C, Tsutsui T 2002 Jpn. J. Appl. Phys. Part 1 41 5626

    [9]

    Kim S H, Jang J, Lee J Y 2000 Appl. Phys. Lett. 89 253501

    [10]

    Chu T Y, Song O K 2007 Appl. Phys. Lett. 90 203512

    [11]

    Carbone A, Pennetta C, Reggiani L 2009 Appl. Phys. Lett. 95 233303

    [12]

    Mott N P, Gurney R W 1948 Electronic Processes in Ionic Crystals (London: Oxford University Press)

    [13]

    Pal A J, Osterbacka R, Kallman K M, Stubb H 1997 Appl. Phys. Lett. 71 228

    [14]

    Fong H H, So S K 2005 J. Appl. Phys. 98 023711

    [15]

    Le Q T, Yan L, Gao Y 2000 Appl. Phys. Lett. 87 375

    [16]

    Hung L S, Zhang R Q, He P, Mason G 2002 J. Phys. D 35 103

    [17]

    Mason M G, Tand C W, Hung L S, Raychaudhuri P, Madathil J, Giesen D J, Yan L, Le Q T, Gao Y, Lee S T, Liao L S, Cheng L F, Salanech W R, Don S D A, Bredas J L 2001 J. Appl. Phys. 89 2756

    [18]

    Liu X D, Xu Z, Zhang F J, Zhao S L, Zhang T H, Gong W, Song J L, Kong C, Yan G, Xu X R 2010 Chin. Phys. B 19 118601

  • [1]

    Di C A, Yu G, Liu Y Q, Xu X J, Song Y B, Zhu D B 2007 Appl. Phys. Lett. 90 133508

    [2]

    Chen Z J, Yu J S, Sakuratani Y, Li M R, Sone M, Miyata S, Watanabe T, Wang X Q, Sato H 2001 J. Appl. Phys. 89 7895

    [3]

    Sun Q J, Xu Z, Zhao S L, Zhang F J, Gao L Y, Tian X Y, Wang Y S 2009 Acta Phys. Sin. 59 8125 (in Chinese) [孙钦军, 徐征, 赵谡玲, 张福俊, 高利岩, 田雪雁, 王永生 2009 物理学报 59 8125]

    [4]

    Ong K H, Lim S L, Tan H S, Wong H K, Li J, Ma Z, Moh L C H, Lim S H, Mello J C D, Chen Z K 2011 Adv. Mater. 23 1409

    [5]

    Xu M, Peng J B 2009 Acta Phys. Sin. 59 2136 (in Chinese) [徐苗, 彭俊彪 2009 物理学报 59 2136]

    [6]

    Blom P W M, De Jong M J M, Vleggaar J J M 1996 Appl. Phys. Lett. 68 3308

    [7]

    Bozano L, Carter S A, Scott J C, Malliaras G G, Brock P J 1999 Appl. Phys. Lett. 74 1132

    [8]

    Yasuda T, Yamaguchi Y, Zou D C, Tsutsui T 2002 Jpn. J. Appl. Phys. Part 1 41 5626

    [9]

    Kim S H, Jang J, Lee J Y 2000 Appl. Phys. Lett. 89 253501

    [10]

    Chu T Y, Song O K 2007 Appl. Phys. Lett. 90 203512

    [11]

    Carbone A, Pennetta C, Reggiani L 2009 Appl. Phys. Lett. 95 233303

    [12]

    Mott N P, Gurney R W 1948 Electronic Processes in Ionic Crystals (London: Oxford University Press)

    [13]

    Pal A J, Osterbacka R, Kallman K M, Stubb H 1997 Appl. Phys. Lett. 71 228

    [14]

    Fong H H, So S K 2005 J. Appl. Phys. 98 023711

    [15]

    Le Q T, Yan L, Gao Y 2000 Appl. Phys. Lett. 87 375

    [16]

    Hung L S, Zhang R Q, He P, Mason G 2002 J. Phys. D 35 103

    [17]

    Mason M G, Tand C W, Hung L S, Raychaudhuri P, Madathil J, Giesen D J, Yan L, Le Q T, Gao Y, Lee S T, Liao L S, Cheng L F, Salanech W R, Don S D A, Bredas J L 2001 J. Appl. Phys. 89 2756

    [18]

    Liu X D, Xu Z, Zhang F J, Zhao S L, Zhang T H, Gong W, Song J L, Kong C, Yan G, Xu X R 2010 Chin. Phys. B 19 118601

  • [1] The physics-based model of AlGaN/GaN high electron mobility transistor outer fringing capacitances. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191931
    [2] Wu Mei-Mei, Zhang Chao, Zhang Can, Sun Qian-Qian, Liu Mei. Surface enhanced Raman scattering characteristics of three-dimensional pyramid stereo composite substrate. Acta Physica Sinica, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191636
    [3] Wang Jing-Li, Chen Zi-Yu, Chen He-Ming. Design of polarization-insensitive 1 × 2 multimode interference demultiplexer based on Si3N4/SiNx/Si3N4 sandwiched structure. Acta Physica Sinica, 2020, 69(5): 054206. doi: 10.7498/aps.69.20191449
  • Citation:
Metrics
  • Abstract views:  1774
  • PDF Downloads:  1213
  • Cited By: 0
Publishing process
  • Received Date:  19 November 2011
  • Accepted Date:  19 December 2011
  • Published Online:  20 July 2012

Preliminary investigation on the method of determining electron mobility of tris (8-hydroxyquinolinato) aluminum by space charge limited current

  • 1. State Key Laboratory on Integrated Optoelectronics, College of Electronics Science and Engineering, Jilin University, Changchun 130012, China
Fund Project:  Project supported by the National High Technology Research and Development Program of China (Grant No. 2011AA03A110), the National Basic Research Program of China (Grant No. 2010CB327701), the National Natural Science Foundation of China (Grant Nos. 60706018, 60906021, 60977024, 60876032, 60907013), the Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20070183088), and Scientific and Technological Developing Scheme of Jilin Province, China (Grant No. 201101034).

Abstract: The charge-carrier mobility of an organic semiconducting material determines the material potential applications in devices. The investigation on mobility of organic material plays a significant role in improving the performance of organic device, such as organic light emitting diode, organic solar cell and organic thin film transistor. In this paper, we employ the space charge limited current (SCLC) method to evaluate the electron mobility of the controlled device based on tris (8-hydroxyquinolinato) aluminum (Alq3). The zero-field mobilities and field-dependent factors of the four devices are fitted respectively. The results show that depositing Al as top-electrode onto buffer layer LiF (1 nm) and Alq3 (100 nm) can significantly improve the the zero-field mobility and field-dependent factor of Alq3. The reason for that is that LiF could strengthen the complex reaction between Al and Alq3 to form Li+1Alq-1 particles, which leads to the enhanced ohmic injection and electron injection.

Reference (18)

Catalog

    /

    返回文章
    返回