Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of annealing temperature on the microstructure and p-type conduction of B-doped nanocrystalline diamond films

Gu Shan-Shan Hu Xiao-Jun Huang Kai

Effects of annealing temperature on the microstructure and p-type conduction of B-doped nanocrystalline diamond films

Gu Shan-Shan, Hu Xiao-Jun, Huang Kai
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Annealing of different temperatures was performed on boron-doped nanocrystalline diamond (BDND) films synthesized by hot filament chemical vapor deposition (HFCVD). Effects of annealing temperature on the microstructural and electrical properties of BDND films were systematically investigated. The Hall-effect results show that smaller resistivity and Hall mobility values as well as higher carrier concentration exist in the 5000 ppm boron-doped nanocrystalline diamond film (NHB) as compared with those in 500 ppm boron-doped nanocrystalline diamond film (NLB). After 1000 ℃ annealing, the Hall mobility of NLB and NHB samples were 53.3 and 39.3 cm2·V-1·s-1, respectively, indicating that annealing increases the Hall mobility and decreases the resistivity of the films. HRTEM, UV, and visible Raman spectroscopic results show that the content of diamond phase in NLB samples is larger than that in NHB samples because higher B-doping concentration results in a greater lattice distortion. After 1000 ℃ annealing, the amount of nano-diamond phase of NLB and NHB samples both increase, indicating that a part of the amorphous carbon transforms into the diamond phase. This provides an opportunity for boron atoms located at the grain boundaries to diffuse into the nano-diamond grains, which increases the concentration of boron in the nano-diamond grains and improves the conductivity of nanocrystalline diamond grains. It is observed that 1000 ℃ annealing treatment is beneficial for lattice perfection of BDND films and reduction of internal stress caused by doping, so that the electrical properties of BDND films are improved. Visible Raman spectra show that the trans-polyacetylene (TPA) peak (1140 cm-1) disappears after 1000 ℃ annealing, which improves the electrical properties of BDND films. It is suggested that the larger the diamond phase content, the better lattice perfection and the less the TPA amount in the annealed BDND samples that prefer to improve the electrical properties of BDND films.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 50972129, 50602039), and the Qianjiang Talent Project of Zhejiang Province of China (Grant No. 2010R10026).
    [1]

    Gracio J J, Fan Q H, Madaleno J C 2010 J. Phys. D: Appl. Phys. 43 374017

    [2]

    Achatz P, Garrido J A, Stutzmann M, Williams O A, Gruen D M, Kromka A, Steinmller D 2006 Appl. Phys. Lett. 88 101908

    [3]

    Qiu D J, Shi C R, Wu H Z 2002 Acta Phys. Sin. 51 1870 (in Chinese) [邱东江, 石成儒, 吴惠桢 2002 物理学报 51 1870]

    [4]

    Gruen D M 1999 Annu. Rev. Mater. Sci. 29 211

    [5]

    Fischer A E, Swain G M 2005 J. Electrochem. Soc. 152 369

    [6]

    Li S S, Ma H A, Li X L, Su T C, Huang G F, Li Y, Jia X P 2011 Chin. Phys. B 20 028103

    [7]

    Fujishima A, Rao T N, Popa E, Sarada B V, Yagi I, Tryk D A 1999 J. Electroanal. Chem. 473 179

    [8]

    Sarada B V, Rao T N, Tryk D A, Fujishima A 1999 J. Electrochem. Soc. 146 1469

    [9]

    Declements R, Swain G M 1997 J. Electrochem. Soc. 144 856

    [10]

    Williams O A, Nesladek M, Daenen M, Michaelson S, Hoffman A, Osawa E, Haenen K, Jackman R B 2008 Diam. Rel. Mater. 17 1080

    [11]

    Butler J E, Surnant A V 2008 Chem. Vap. Deposition 14 145

    [12]

    Gajewski W, Achatz P, Williams O A, Haenen K, Bustarret E, Stutzmann M, Garrido J A 2009 Phys. Rev. B 79 045206

    [13]

    Nesladek M, Mares J J, Tromson D, Mer C, Bergonzo P, Hubik P, Kristofik J 2006 Sci. Tech. Adv. Mater. 7 S41

    [14]

    Nesládek M, Tromson D, Mer C, Bergonzo P 2006 Appl. Phys. Lett. 88 232111

    [15]

    Souza F A, Azevedo A F, Giles C, Saito E, Baldan M R, Ferreira N G 2012 Chem. Vap. Deposition 18 159

    [16]

    Williams O A, Nesládek M 2006 Phys. Stat. Sol. (a) 13 3375

    [17]

    May P W, Ludlow W J, Hannaway M 2008 Diam. Rel. Mater. 17 105

    [18]

    Show Y, Witek M A, Sonthalia P 2003 Chem. Mater. 15 879

    [19]

    Li H, Sheldon B W, Kothari A, Ban Z, Walden B L 2006 J. Appl .Phys. 100 094309

    [20]

    Pan J P, Hu X J, Lu L P, Yin C 2010 Acta Phys. Sin. 59 7410 (in Chinese) [潘金平, 胡晓君, 陆利平, 印迟 2010 物理学报 59 7410]

    [21]

    Hu H, Hu X J, Bai B W, Chen X H, 2012 Acta Phys. Sin. 61 148101 (in Chinese) [胡衡, 胡晓君, 白博文, 陈小虎 2012 物理学报 61 148101]

    [22]

    Pearson G L, Bardeen J 1949 Phys.Rev. 75 865

    [23]

    Ferrari A C, Robertson J 2001 Phys. Rev. B 64 075414

    [24]

    Rodil S E, Muhl S, Maca S, Ferrari A C 2003 Thin Solid Films 433 119

    [25]

    Hu X J, Ye J S, Liu H J, Shen Y G, Chen X H, Hu H 2011 J. Appl .Phys. 109 053524

    [26]

    Wang S H, Swope V M, Butler J E 2009 Diam. Rel. Mater. 18 669

    [27]

    Ferrari A C, Robertson J 2001 Phys. Rev. B 63 121405

    [28]

    Teii K, Ikeda T 2007 Diam. Rel. Mater. 16 753

    [29]

    Chhowalla M, Ferrari A C, Robertson J 2000 Appl. Phys. Lett. 76 1419

    [30]

    Pfeiffer R, Kuzmany H, Knoll P, Bokova S, Salk N, Gnther B 2003 Diam. Relat. Mater. 12 268

    [31]

    Michaelson S, Hoffman A 2006 Diam. Rel. Mater. 15 486

    [32]

    Ferrari A C, Kleinsorge B, Morrison N A 1999 Appl. Phys. Lett. 85 7191

  • [1]

    Gracio J J, Fan Q H, Madaleno J C 2010 J. Phys. D: Appl. Phys. 43 374017

    [2]

    Achatz P, Garrido J A, Stutzmann M, Williams O A, Gruen D M, Kromka A, Steinmller D 2006 Appl. Phys. Lett. 88 101908

    [3]

    Qiu D J, Shi C R, Wu H Z 2002 Acta Phys. Sin. 51 1870 (in Chinese) [邱东江, 石成儒, 吴惠桢 2002 物理学报 51 1870]

    [4]

    Gruen D M 1999 Annu. Rev. Mater. Sci. 29 211

    [5]

    Fischer A E, Swain G M 2005 J. Electrochem. Soc. 152 369

    [6]

    Li S S, Ma H A, Li X L, Su T C, Huang G F, Li Y, Jia X P 2011 Chin. Phys. B 20 028103

    [7]

    Fujishima A, Rao T N, Popa E, Sarada B V, Yagi I, Tryk D A 1999 J. Electroanal. Chem. 473 179

    [8]

    Sarada B V, Rao T N, Tryk D A, Fujishima A 1999 J. Electrochem. Soc. 146 1469

    [9]

    Declements R, Swain G M 1997 J. Electrochem. Soc. 144 856

    [10]

    Williams O A, Nesladek M, Daenen M, Michaelson S, Hoffman A, Osawa E, Haenen K, Jackman R B 2008 Diam. Rel. Mater. 17 1080

    [11]

    Butler J E, Surnant A V 2008 Chem. Vap. Deposition 14 145

    [12]

    Gajewski W, Achatz P, Williams O A, Haenen K, Bustarret E, Stutzmann M, Garrido J A 2009 Phys. Rev. B 79 045206

    [13]

    Nesladek M, Mares J J, Tromson D, Mer C, Bergonzo P, Hubik P, Kristofik J 2006 Sci. Tech. Adv. Mater. 7 S41

    [14]

    Nesládek M, Tromson D, Mer C, Bergonzo P 2006 Appl. Phys. Lett. 88 232111

    [15]

    Souza F A, Azevedo A F, Giles C, Saito E, Baldan M R, Ferreira N G 2012 Chem. Vap. Deposition 18 159

    [16]

    Williams O A, Nesládek M 2006 Phys. Stat. Sol. (a) 13 3375

    [17]

    May P W, Ludlow W J, Hannaway M 2008 Diam. Rel. Mater. 17 105

    [18]

    Show Y, Witek M A, Sonthalia P 2003 Chem. Mater. 15 879

    [19]

    Li H, Sheldon B W, Kothari A, Ban Z, Walden B L 2006 J. Appl .Phys. 100 094309

    [20]

    Pan J P, Hu X J, Lu L P, Yin C 2010 Acta Phys. Sin. 59 7410 (in Chinese) [潘金平, 胡晓君, 陆利平, 印迟 2010 物理学报 59 7410]

    [21]

    Hu H, Hu X J, Bai B W, Chen X H, 2012 Acta Phys. Sin. 61 148101 (in Chinese) [胡衡, 胡晓君, 白博文, 陈小虎 2012 物理学报 61 148101]

    [22]

    Pearson G L, Bardeen J 1949 Phys.Rev. 75 865

    [23]

    Ferrari A C, Robertson J 2001 Phys. Rev. B 64 075414

    [24]

    Rodil S E, Muhl S, Maca S, Ferrari A C 2003 Thin Solid Films 433 119

    [25]

    Hu X J, Ye J S, Liu H J, Shen Y G, Chen X H, Hu H 2011 J. Appl .Phys. 109 053524

    [26]

    Wang S H, Swope V M, Butler J E 2009 Diam. Rel. Mater. 18 669

    [27]

    Ferrari A C, Robertson J 2001 Phys. Rev. B 63 121405

    [28]

    Teii K, Ikeda T 2007 Diam. Rel. Mater. 16 753

    [29]

    Chhowalla M, Ferrari A C, Robertson J 2000 Appl. Phys. Lett. 76 1419

    [30]

    Pfeiffer R, Kuzmany H, Knoll P, Bokova S, Salk N, Gnther B 2003 Diam. Relat. Mater. 12 268

    [31]

    Michaelson S, Hoffman A 2006 Diam. Rel. Mater. 15 486

    [32]

    Ferrari A C, Kleinsorge B, Morrison N A 1999 Appl. Phys. Lett. 85 7191

  • [1] Hu Heng, Hu Xiao-Jun, Bai Bo-Wen, Chen Xiao-Hu. Effects of annealing time on the microstructural and electrochemical properties of B-doped nanocrystalline diamond films. Acta Physica Sinica, 2012, 61(14): 148101. doi: 10.7498/aps.61.148101
    [2] YANG FU-HUA, WANG YONG-QIAN, CHEN CHANG-YONG, CHEN WEI-DE, DIAO HONG-WEI, XU ZHEN-JIA, ZHANG SHI-BIN, KONG GUANG-LIN, LIAO XIAN-BO. THE MICROSTRUCTURE AND ITS HIGH-TEMPERATURE ANNEALING BEHAVIOURS OF a-Si∶O∶H FILM. Acta Physica Sinica, 2001, 50(12): 2418-2422. doi: 10.7498/aps.50.2418
    [3] Pan Jin-Ping, Hu Xiao-Jun, Lu Li-Ping, Yin Chi. Influence of annealing on the microstructure and electrochemical properties of B-doped nanocrystalline diamond films. Acta Physica Sinica, 2010, 59(10): 7410-7416. doi: 10.7498/aps.59.7410
    [4] Yuan Chang-Lai, Liu Xin-Yu, Ma Jia-Feng, Zhou Chang-Rong. Study on the microstructures and electrical properties of Bi0.5Ba0.5Fe0.5Ti0.49Nb0.01O3 thermistor ceramic. Acta Physica Sinica, 2010, 59(6): 4253-4260. doi: 10.7498/aps.59.4253
    [5] Zhang Qiang, Zhu Xiao-Hong, Xu Yun-Hui, Xiao Yun-Jun, Gao Hao-Bin, Liang Da-Yun, Zhu Ji-Liang, Zhu Jian-Guo, Xiao Ding-Quan. Effect of Mn4+ doping on the microstructure and electrical property of BiFeO3 ceramic. Acta Physica Sinica, 2012, 61(14): 142301. doi: 10.7498/aps.61.142301
    [6] Luo Qing-Hong, Lou Yan-Zhi, Zhao Zhen-Ye, Yang Hui-Sheng. Effect of annealing on microstructure and mechanical propertiesof AlTiN multilayer coatings. Acta Physica Sinica, 2011, 60(6): 066201. doi: 10.7498/aps.60.066201
    [7] Wang Feng-Hao, Hu Xiao-Jun. Microstructural and photoelectrical properties of oxygen-ion-implanted microcrystalline diamond films. Acta Physica Sinica, 2013, 62(15): 158101. doi: 10.7498/aps.62.158101
    [8] Wang Rui, Hu Xiao-Jun. The microstructural and electrochemical properties of oxygen ion implanted nanocrystalline diamond films. Acta Physica Sinica, 2014, 63(14): 148102. doi: 10.7498/aps.63.148102
    [9] Jiang Mei-Yan, Zhu Zheng-Jie, Chen Cheng-Ke, Li Xiao, Hu Xiao-Jun. Microstructural and electrochemical properties of sulfur ion implanted nanocrystalline diamond films. Acta Physica Sinica, 2019, 68(14): 148101. doi: 10.7498/aps.68.20190394
    [10] Yang Duo, Zhong Ning, Shang Hai-Long, Sun Shi-Yang, Li Ge-Yang. Microstructures and mechanical properties of (Ti, N)/Al nanocomposite films by magnetron sputtering. Acta Physica Sinica, 2013, 62(3): 036801. doi: 10.7498/aps.62.036801
    [11] Zhang Zeng-Yuan, Gao Xiao-Yong, Feng Hong-Liang, Ma Jiao-Min, Lu Jing-Xiao. Effect of vacuum thermal-annealing temperatures on the microstructure and optical properties of single-phased Ag2O film. Acta Physica Sinica, 2011, 60(3): 036107. doi: 10.7498/aps.60.036107
    [12] Wang Yong-Qian, Chen Wei-De, Chen Chang-Yong, Diao Hong-Wei, Zhang Shi-Ben, Xu Yan-Yue, Kong Guang-Lin, Liao Xian-Bo. . Acta Physica Sinica, 2002, 51(7): 1564-1570. doi: 10.7498/aps.51.1564
    [13] Song Chao, Chen Gu-Ran, Xu Jun, Wang Tao, Sun Hong-Cheng, Liu Yu, Li Wei, Chen Kun-Ji. Properties of electric transport in crystallized silicon films under different annealing temperatures. Acta Physica Sinica, 2009, 58(11): 7878-7883. doi: 10.7498/aps.58.7878
    [14] Xu Da-Qing, Zhang Yi-Men, Lou Yong-Le, Tong Jun. Influences of post-heat treatment on microstructures, optical and magnetic properties of unintentionally doped GaN epilayers implanted with Mn ions. Acta Physica Sinica, 2014, 63(4): 047501. doi: 10.7498/aps.63.047501
    [15] GUO DONG, CAI KAI, LI LONG-TU, GUI ZHI-LUN. ELECTRODEPOSITION OF DIAMOND-LIKE CARBON FILMS FROM ORGANIC SOLVENTS AND EFFECTS OF ANNEALING ON THE FILM STRUCTURE. Acta Physica Sinica, 2001, 50(12): 2413-2417. doi: 10.7498/aps.50.2413
    [16] Li Yong, Wang Ying, Li Shang-Sheng, Li Zong-Bao, Luo Kai-Wu, Ran Mao-Wu, Song Mou-Sheng. Synthesis of diamond co-doped with B and S under high pressure and high temperature and electrical properties of the synthesized diamond. Acta Physica Sinica, 2019, 68(9): 098101. doi: 10.7498/aps.68.20190133
    [17] Zhang Bin, Wang Wei-Li, Niu Qiao-Li, Zou Xian-Shao, Dong Jun, Zhang Yong. Effects of annealing in H2 atomsphere on optoelectronical properties of Nb-doped TiO2 thin films. Acta Physica Sinica, 2014, 63(6): 068102. doi: 10.7498/aps.63.068102
    [18] Zhang Jin-Shuai, Huang Qiu-Shi, Jiang Li, Qi Run-Ze, Yang Yang, Wang Feng-Li, Zhang Zhong, Wang Zhan-Shan. Stress and structure properties of X-ray W/Si multilayer under low temperature annealing. Acta Physica Sinica, 2016, 65(8): 086101. doi: 10.7498/aps.65.086101
    [19] Sun Cheng-Wei, Liu Zhi-Wen, Zhang Qing-Yu. Influence of annealing temperature on the microstructure and photoluminescence of ZnO films. Acta Physica Sinica, 2006, 55(1): 430-436. doi: 10.7498/aps.55.430
    [20] Fang Ze-Bo, Gong Heng-Xiang, Liu Xue-Qin, Xu Da-Yin, Huang Chun-Ming, Wang Yin-Yue. Effects of annealing on the structure and photoluminescence of ZnO films. Acta Physica Sinica, 2003, 52(7): 1748-1751. doi: 10.7498/aps.52.1748
  • Citation:
Metrics
  • Abstract views:  6988
  • PDF Downloads:  925
  • Cited By: 0
Publishing process
  • Received Date:  18 December 2012
  • Accepted Date:  07 January 2013
  • Published Online:  05 June 2013

Effects of annealing temperature on the microstructure and p-type conduction of B-doped nanocrystalline diamond films

  • 1. College of Chemical Engineering and Material Science, Zhejiang University of Technology, Hangzhou 310014, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 50972129, 50602039), and the Qianjiang Talent Project of Zhejiang Province of China (Grant No. 2010R10026).

Abstract: Annealing of different temperatures was performed on boron-doped nanocrystalline diamond (BDND) films synthesized by hot filament chemical vapor deposition (HFCVD). Effects of annealing temperature on the microstructural and electrical properties of BDND films were systematically investigated. The Hall-effect results show that smaller resistivity and Hall mobility values as well as higher carrier concentration exist in the 5000 ppm boron-doped nanocrystalline diamond film (NHB) as compared with those in 500 ppm boron-doped nanocrystalline diamond film (NLB). After 1000 ℃ annealing, the Hall mobility of NLB and NHB samples were 53.3 and 39.3 cm2·V-1·s-1, respectively, indicating that annealing increases the Hall mobility and decreases the resistivity of the films. HRTEM, UV, and visible Raman spectroscopic results show that the content of diamond phase in NLB samples is larger than that in NHB samples because higher B-doping concentration results in a greater lattice distortion. After 1000 ℃ annealing, the amount of nano-diamond phase of NLB and NHB samples both increase, indicating that a part of the amorphous carbon transforms into the diamond phase. This provides an opportunity for boron atoms located at the grain boundaries to diffuse into the nano-diamond grains, which increases the concentration of boron in the nano-diamond grains and improves the conductivity of nanocrystalline diamond grains. It is observed that 1000 ℃ annealing treatment is beneficial for lattice perfection of BDND films and reduction of internal stress caused by doping, so that the electrical properties of BDND films are improved. Visible Raman spectra show that the trans-polyacetylene (TPA) peak (1140 cm-1) disappears after 1000 ℃ annealing, which improves the electrical properties of BDND films. It is suggested that the larger the diamond phase content, the better lattice perfection and the less the TPA amount in the annealed BDND samples that prefer to improve the electrical properties of BDND films.

Reference (32)

Catalog

    /

    返回文章
    返回