Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Degradation mechanism of leakage current in AlGaN/GaN high electron mobility transistors

Ren Jian Yan Da-Wei Gu Xiao-Feng

Degradation mechanism of leakage current in AlGaN/GaN high electron mobility transistors

Ren Jian, Yan Da-Wei, Gu Xiao-Feng
PDF
Get Citation
  • In order to study the degradation mechanism of leakage current in AlGaN/GaN high electron mobility transistors (HEMTs), we have fabricated AlGaN/GaN heterojunction Schottky diodes having equivalent structure and characteristics to AlGaN/GaN HEMTs. Step stress tests were then performed to compare the leakage current changes at different gate voltages. The transport mechanism of leakage current before and after degradation was validated based on the current-voltage and capacitance-voltage measurements. The light emission from the device surface was examined by emission microscopy (EMMI) to investigate the time-dependent degradation of leakage current. Experimental results show that the leakage current increases with increasing time and is accompanied by a large noise when the applied gate voltage exceeds a critical value. After introducing the polarization field into the current-field dependence, log(IFT/E) exhibits a good linear relationship with E both before and after degradation, indicating that the leakage current is dominated by the Frenkel-Poole (FP) emission. The slope of log(IFT/E)-E curve decreases after degradation, and the hot spots corresponding to defects are directly observed by EMMI at the gate edge of the degraded device, suggesting that the degradation mechanism is: New defects are induced by high electric field in the AlGaN layer, and the increase of defect density leads to the increase of FP emission current.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11074280), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2012110), the Fundamental Research Funds for the Central Universities (Grant Nos. JUSRP51323B, JUDCF13038), PAPD of Jiangsu Higher Education Institutions, the Summit of the Six Top Talents Program of Jiangsu Province, China (Grant No. DZXX-053), and the Graduate Student Innovation Program for University of Jiangsu Province (Grant No. CXLX13-740).
    [1]

    Wang X W, Omair I S, Xi B, Lou X B, Richard J M 2012 Appl. Phys. Lett. 101 232109

    [2]

    Zhang Z W, Zhu C F, Fong W K, Surya C 2011 Solid-State Electronics 62 94

    [3]

    Toyoda S, Shinohara T, Kumigashira H, Oshima M, Kato Y 2012 Appl. Phys. Lett. 101 231607

    [4]

    Eastman L F, Tilak V, Smart J, Bruce M G, Eduardo M C, Dimtrov R 2001 IEEE Transactions on Electron Devices 48 479

    [5]

    Joh J, Alamo J A 2008 IEEE Electron Device Letters 29 287

    [6]

    Marcon D, Kauerauf T, Medjdoub T, Das J, Van H M 2010 IEEE IEDM San Francisco, CA Dec. 6-8, 2010 472

    [7]

    Gu W P, Hao Y, Zhang J C, Wang C, Feng Q, Ma X H 2009 Acta Phys. Sin. 58 511 (in Chinese) [谷文萍, 郝跃, 张进城, 王冲, 冯倩, 马晓华 2009 物理学报 58 511]

    [8]

    Chang C Y, Douglas E A, Jinhyung K, Liu L 2011 IEEE Trans. Device Mater. Rel. 11 187

    [9]

    Meneghesso G, Verzellesi G, Danesin F, Francesca D, Fabiana R 2008 IEEE Trans. Device Mater. Rel. 8 332

    [10]

    Piner E, Singhal S, Rajagopal P, Therrien R, Roberts J C, Li T 2006 IEDM San Francisco, CA Dec. 11-13, 2006 411

    [11]

    Karmalkar S, Sathaiya D M 2003 Appl. Phys. Lett. 82 3976

    [12]

    Yan D W, Lu H, Cao D S 2010 Appl. Phys. Lett. 97 153503

    [13]

    Garrido J A, Jiménez A, Munoz E 1999 Phys. Status Solidi A 176 195

    [14]

    Winzer A T, Goldhahn R, Gobsch G 2005 Appl. Phys. Lett. 86 181912

    [15]

    Kurtz S R, Allerman A A, Koleske D D, Peake G M 2002 Appl. Phys. Lett. 80 4549

    [16]

    Ryuzaki D, Ishida T, Furusawa T 2003 J. Electrochem. Soc. 150 F203

    [17]

    Yeargan J R, Taylor H L 1968 J. Appl. Phys. 39 5600

    [18]

    Wang X H, Wang J H, Pang L, Chen X J, Yuan T T, Luo W J, Liu X Y 2012 Acta Phys. Sin. 61 177302 (in Chinese) [王鑫华, 王建辉, 庞磊, 陈晓娟, 袁婷婷, 罗卫军, 刘新宇 2012 物理学报 61 177302]

  • [1]

    Wang X W, Omair I S, Xi B, Lou X B, Richard J M 2012 Appl. Phys. Lett. 101 232109

    [2]

    Zhang Z W, Zhu C F, Fong W K, Surya C 2011 Solid-State Electronics 62 94

    [3]

    Toyoda S, Shinohara T, Kumigashira H, Oshima M, Kato Y 2012 Appl. Phys. Lett. 101 231607

    [4]

    Eastman L F, Tilak V, Smart J, Bruce M G, Eduardo M C, Dimtrov R 2001 IEEE Transactions on Electron Devices 48 479

    [5]

    Joh J, Alamo J A 2008 IEEE Electron Device Letters 29 287

    [6]

    Marcon D, Kauerauf T, Medjdoub T, Das J, Van H M 2010 IEEE IEDM San Francisco, CA Dec. 6-8, 2010 472

    [7]

    Gu W P, Hao Y, Zhang J C, Wang C, Feng Q, Ma X H 2009 Acta Phys. Sin. 58 511 (in Chinese) [谷文萍, 郝跃, 张进城, 王冲, 冯倩, 马晓华 2009 物理学报 58 511]

    [8]

    Chang C Y, Douglas E A, Jinhyung K, Liu L 2011 IEEE Trans. Device Mater. Rel. 11 187

    [9]

    Meneghesso G, Verzellesi G, Danesin F, Francesca D, Fabiana R 2008 IEEE Trans. Device Mater. Rel. 8 332

    [10]

    Piner E, Singhal S, Rajagopal P, Therrien R, Roberts J C, Li T 2006 IEDM San Francisco, CA Dec. 11-13, 2006 411

    [11]

    Karmalkar S, Sathaiya D M 2003 Appl. Phys. Lett. 82 3976

    [12]

    Yan D W, Lu H, Cao D S 2010 Appl. Phys. Lett. 97 153503

    [13]

    Garrido J A, Jiménez A, Munoz E 1999 Phys. Status Solidi A 176 195

    [14]

    Winzer A T, Goldhahn R, Gobsch G 2005 Appl. Phys. Lett. 86 181912

    [15]

    Kurtz S R, Allerman A A, Koleske D D, Peake G M 2002 Appl. Phys. Lett. 80 4549

    [16]

    Ryuzaki D, Ishida T, Furusawa T 2003 J. Electrochem. Soc. 150 F203

    [17]

    Yeargan J R, Taylor H L 1968 J. Appl. Phys. 39 5600

    [18]

    Wang X H, Wang J H, Pang L, Chen X J, Yuan T T, Luo W J, Liu X Y 2012 Acta Phys. Sin. 61 177302 (in Chinese) [王鑫华, 王建辉, 庞磊, 陈晓娟, 袁婷婷, 罗卫军, 刘新宇 2012 物理学报 61 177302]

  • [1] The physics-based model of AlGaN/GaN high electron mobility transistor outer fringing capacitances. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191931
    [2] Investigate the effect of source-drain conduction in single-event transient on nanoscale bulk fin field effect transistor. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191896
    [3] The spring oscillator model degenerated into the coupled-mode theory by using secular perturbation theory. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191505
    [4] Xu Xian-Da, Zhao Lei, Sun Wei-Feng. First-principles on the energy band mechanism for modifying conduction property of graphene nanomeshes. Acta Physica Sinica, 2020, 69(4): 047101. doi: 10.7498/aps.69.20190657
    [5] Zhao Jian-Ning, Liu Dong-Huan, Wei Dong, Shang Xin-Chun. Thermal rectification mechanism of one-dimensional composite structure with interface thermal contact resistance. Acta Physica Sinica, 2020, 69(5): 056501. doi: 10.7498/aps.69.20191409
    [6] Preparing GaN nanowires on Al2O3 substrate without catalyst and its optical property research. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191923
    [7] Ren Xian-Li, Zhang Wei-Wei, Wu Xiao-Yong, Wu Lu, Wang Yue-Xia. Prediction of short range order in high-entropy alloys and its effect on the electronic, magnetic and mechanical properties. Acta Physica Sinica, 2020, 69(4): 046102. doi: 10.7498/aps.69.20191671
    [8] Zhang Ya-Nan, Zhan Nan, Deng Ling-Ling, Chen Shu-Fen. Efficiency improvement in solution-processed multilayered phosphorescent white organic light emitting diodes by silica coated silver nanocubes. Acta Physica Sinica, 2020, 69(4): 047801. doi: 10.7498/aps.69.20191526
    [9] The influence of the secondary electron emission characteristic of dielectric materials on the microwave breakdown. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20200026
    [10] Luo Duan, Hui Dan-Dan, Wen Wen-Long, Li Li-Li, Xin Li-Wei, Zhong Zi-Yuan, Ji Chao, Chen Ping, He Kai, Wang Xing, Tian Jin-Shou. Design of femtosecond electron diffractometer with adjustable gap. Acta Physica Sinica, 2020, 69(5): 052901. doi: 10.7498/aps.69.20191157
    [11] Fang Wen-Yu, Zhang Peng-Cheng, Zhao Jun, Kang Wen-Bin. Electronic structure and photocatalytic properties of H, F modified two-dimensional GeTe. Acta Physica Sinica, 2020, 69(5): 056301. doi: 10.7498/aps.69.20191391
  • Citation:
Metrics
  • Abstract views:  744
  • PDF Downloads:  639
  • Cited By: 0
Publishing process
  • Received Date:  03 March 2013
  • Accepted Date:  31 March 2013
  • Published Online:  05 August 2013

Degradation mechanism of leakage current in AlGaN/GaN high electron mobility transistors

  • 1. Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 11074280), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2012110), the Fundamental Research Funds for the Central Universities (Grant Nos. JUSRP51323B, JUDCF13038), PAPD of Jiangsu Higher Education Institutions, the Summit of the Six Top Talents Program of Jiangsu Province, China (Grant No. DZXX-053), and the Graduate Student Innovation Program for University of Jiangsu Province (Grant No. CXLX13-740).

Abstract: In order to study the degradation mechanism of leakage current in AlGaN/GaN high electron mobility transistors (HEMTs), we have fabricated AlGaN/GaN heterojunction Schottky diodes having equivalent structure and characteristics to AlGaN/GaN HEMTs. Step stress tests were then performed to compare the leakage current changes at different gate voltages. The transport mechanism of leakage current before and after degradation was validated based on the current-voltage and capacitance-voltage measurements. The light emission from the device surface was examined by emission microscopy (EMMI) to investigate the time-dependent degradation of leakage current. Experimental results show that the leakage current increases with increasing time and is accompanied by a large noise when the applied gate voltage exceeds a critical value. After introducing the polarization field into the current-field dependence, log(IFT/E) exhibits a good linear relationship with E both before and after degradation, indicating that the leakage current is dominated by the Frenkel-Poole (FP) emission. The slope of log(IFT/E)-E curve decreases after degradation, and the hot spots corresponding to defects are directly observed by EMMI at the gate edge of the degraded device, suggesting that the degradation mechanism is: New defects are induced by high electric field in the AlGaN layer, and the increase of defect density leads to the increase of FP emission current.

Reference (18)

Catalog

    /

    返回文章
    返回