Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Magnetism of MgO nanoparticles

Fan Wei Zeng Zhi

Magnetism of MgO nanoparticles

Fan Wei, Zeng Zhi
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • MgO polycrystal is found to be weakly magnetic experimentally, although its single crystal is non magnetic. In this work, the magnetic properties of surfaces of crystal and nano-particles of MgO are studied by the first-principles density functional theory. The obtained results show that there are the oxygen-rich regions in all the magnetic surfaces discussed in this work, especially in the (111) surface with pure oxygen layer and the (114) surface with pure oxygen chains. Other surfaces with high Miller indices generally have the oxygen-rich regions. For MgO nano-particles, the facets with high Miller indices and the edges and vertexes formed by different orientation surfaces are oxygen-rich possibly and have strong magnetism. The itinerant magnetism is indentified for the magnetism on the surfaces of MgO crystal and the surfaces of MgO nano-particles. That the special MgO ∑ 7[111] grain boundary is not magnetic means that the magnetism of MgO grain boundary is weak if the chemical composition in grain-boundary region is slightly different from that in the crystal. It can be inferred that the magnetism of MgO polycrystal is mainly contributed by the polycrystal surface, the micro-pores, micro-voids and micro-cracks.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2012CB933702), the National Natural Science Foundation of China (Grant No. 11174284), and the Key Program of Joint Funds of the National Natural Science Foundation of China (Grant No. U1230202).
    [1]

    Sundaresan A, Rao C N R 2009 Nano Today 4 96

    [2]

    Rehman S, Mumtaz A, Hasanain S K 2011 J. Nanopart. Res. 13 2497

    [3]

    Venkatesan M, Fitzgerald C B, Coey J M D 2004 Nature 430 630

    [4]

    Sundaresan A, Rao C N R 2009 Solid State Commun. 149 1197

    [5]

    Sundaresan A, Bhargavi R, Rangarajan N, Siddesh U, Rao C N R 2006 Phys. Rev. B 74 161306(R)

    [6]

    Hong N H, Sakai J, Poirot N, Brizé V 2006 Phys. Rev. B 73 132404

    [7]

    Khalid M, Setzer A, Ziese M, Esquinazi P, Spemann D, Pöppl A, Goering E 2010 Phys. Rev. B 81 214414

    [8]

    Martínez-Boubeta C, Beltrán J I, Balcells L L, Konstantinović Z, Valencia S, Schmitz D, Arbiol J, Estrade S, Cornil J, Martínez B 2010 Phys. Rev. B 82 024405

    [9]

    Maoz B M, Tirosh E, Sadan M B, Markovich G 2011 Phys. Rev. B 83 161201(R)

    [10]

    Osorio-Guillén J, Lany S, Barabash S V, Zunger A 2006 Phys. Rev. Lett. 96 107203

    [11]

    Pemmaraju C D, Sanvito S 2005 Phys. Rev. Lett. 94 217205

    [12]

    Baranek P, Pinarello G, Pisani C, Dovesi R 2000 Phys. Chem. Chem. Phys. 2 3893

    [13]

    Shipra, Gomathi A, Sundaresan A, Rao C N R 2007 Solid State Commun. 142 685

    [14]

    Hasanain S K, Akhtar N, Mumtaz A 2011 J. Nanopart. Res. 13 1953

    [15]

    Zhu Z H, Gao D Q, Dong C H, Yang G J, Zhang J, Zhang J L, Shi Z H, Gao H, Luo H G, Xue D S 2012 Phys. Chem. Phys. 14 3859

    [16]

    Baqiya M A, Widodo H, Rochmawati L, Darminito, Adachi T, Koike Y 2012 AIP Conf. Proc. 1454 260

    [17]

    Fan W, Zou L J, Zeng Z 2013 Physica C 492 80

    [18]

    Fan W, Zeng Z 2011 Physica C 471 1606

    [19]

    Yang P D, Lieber C M 1996 Science 273 1836

    [20]

    Fang X S, Ye C H, Xie T, Wang Z Y, Zhao J W, Zhang L D 2006 Appl. Phys. Lett. 88 013101

    [21]

    Chen L, Xu C, Zhang X F 2009 Acta Phys. Sin. 58 1603 [陈亮, 徐灿, 张小芳 2009 物理学报 58 1603]

    [22]

    Chen H S, Chen H J 2011 Acta Phys. Sin. 60 073601 [陈宏善, 陈华君 2011 物理学报 60 073601]

    [23]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [24]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [26]

    Sutton A P, Balluffi R W 1995 Interface in Crystalline Materials (Oxford: Clarendon Press)

    [27]

    Balluffi R W 1982 Metall. Trans. B 13 527

    [28]

    Wang F G, Pang Z Y, Lin L, Fang S J, Dai Y, Han S H 2009 Phys. Rev. B 80 144424

    [29]

    Plass R, Egan K, Collazo-Davila C, Grozea D, Landree E, Marks L D, Gajdardziska-Josifovska M 1998 Phys. Rev. Lett. 81 4891

    [30]

    Gunnarsson O 1976 J. Phys. F: Metal. Phys. 6 587

    [31]

    Ge G X, Luo Y H 2008 Acta Phys. Sin. 57 4851 (in Chinese) [葛桂贤, 罗有华 2008 物理学报 57 4851]

    [32]

    Zhang T, Fang Y Z, Dressel M, Wang X P, Fang Q F 2010 J. Appl. Phys. 108 113901

    [33]

    Han X F 2008 Physics 37 398 [韩秀峰 2008 物理 37 398]

    [34]

    Li Y B, Wei F L, Yang Z 2009 Physics 38 420 [李彦波, 魏福林, 杨正 2009 物理 38 420]

    [35]

    Iida K, Hänisch J, Trommler S, Haindl S, Kurth F, Hhne R, Schultz L, Holzapfel B 2011 Supercond. Sci. Technol. 24 125009

    [36]

    Momma K, Izumi F 2008 J. Appl. Crystallogr. 41 653

  • [1]

    Sundaresan A, Rao C N R 2009 Nano Today 4 96

    [2]

    Rehman S, Mumtaz A, Hasanain S K 2011 J. Nanopart. Res. 13 2497

    [3]

    Venkatesan M, Fitzgerald C B, Coey J M D 2004 Nature 430 630

    [4]

    Sundaresan A, Rao C N R 2009 Solid State Commun. 149 1197

    [5]

    Sundaresan A, Bhargavi R, Rangarajan N, Siddesh U, Rao C N R 2006 Phys. Rev. B 74 161306(R)

    [6]

    Hong N H, Sakai J, Poirot N, Brizé V 2006 Phys. Rev. B 73 132404

    [7]

    Khalid M, Setzer A, Ziese M, Esquinazi P, Spemann D, Pöppl A, Goering E 2010 Phys. Rev. B 81 214414

    [8]

    Martínez-Boubeta C, Beltrán J I, Balcells L L, Konstantinović Z, Valencia S, Schmitz D, Arbiol J, Estrade S, Cornil J, Martínez B 2010 Phys. Rev. B 82 024405

    [9]

    Maoz B M, Tirosh E, Sadan M B, Markovich G 2011 Phys. Rev. B 83 161201(R)

    [10]

    Osorio-Guillén J, Lany S, Barabash S V, Zunger A 2006 Phys. Rev. Lett. 96 107203

    [11]

    Pemmaraju C D, Sanvito S 2005 Phys. Rev. Lett. 94 217205

    [12]

    Baranek P, Pinarello G, Pisani C, Dovesi R 2000 Phys. Chem. Chem. Phys. 2 3893

    [13]

    Shipra, Gomathi A, Sundaresan A, Rao C N R 2007 Solid State Commun. 142 685

    [14]

    Hasanain S K, Akhtar N, Mumtaz A 2011 J. Nanopart. Res. 13 1953

    [15]

    Zhu Z H, Gao D Q, Dong C H, Yang G J, Zhang J, Zhang J L, Shi Z H, Gao H, Luo H G, Xue D S 2012 Phys. Chem. Phys. 14 3859

    [16]

    Baqiya M A, Widodo H, Rochmawati L, Darminito, Adachi T, Koike Y 2012 AIP Conf. Proc. 1454 260

    [17]

    Fan W, Zou L J, Zeng Z 2013 Physica C 492 80

    [18]

    Fan W, Zeng Z 2011 Physica C 471 1606

    [19]

    Yang P D, Lieber C M 1996 Science 273 1836

    [20]

    Fang X S, Ye C H, Xie T, Wang Z Y, Zhao J W, Zhang L D 2006 Appl. Phys. Lett. 88 013101

    [21]

    Chen L, Xu C, Zhang X F 2009 Acta Phys. Sin. 58 1603 [陈亮, 徐灿, 张小芳 2009 物理学报 58 1603]

    [22]

    Chen H S, Chen H J 2011 Acta Phys. Sin. 60 073601 [陈宏善, 陈华君 2011 物理学报 60 073601]

    [23]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [24]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [26]

    Sutton A P, Balluffi R W 1995 Interface in Crystalline Materials (Oxford: Clarendon Press)

    [27]

    Balluffi R W 1982 Metall. Trans. B 13 527

    [28]

    Wang F G, Pang Z Y, Lin L, Fang S J, Dai Y, Han S H 2009 Phys. Rev. B 80 144424

    [29]

    Plass R, Egan K, Collazo-Davila C, Grozea D, Landree E, Marks L D, Gajdardziska-Josifovska M 1998 Phys. Rev. Lett. 81 4891

    [30]

    Gunnarsson O 1976 J. Phys. F: Metal. Phys. 6 587

    [31]

    Ge G X, Luo Y H 2008 Acta Phys. Sin. 57 4851 (in Chinese) [葛桂贤, 罗有华 2008 物理学报 57 4851]

    [32]

    Zhang T, Fang Y Z, Dressel M, Wang X P, Fang Q F 2010 J. Appl. Phys. 108 113901

    [33]

    Han X F 2008 Physics 37 398 [韩秀峰 2008 物理 37 398]

    [34]

    Li Y B, Wei F L, Yang Z 2009 Physics 38 420 [李彦波, 魏福林, 杨正 2009 物理 38 420]

    [35]

    Iida K, Hänisch J, Trommler S, Haindl S, Kurth F, Hhne R, Schultz L, Holzapfel B 2011 Supercond. Sci. Technol. 24 125009

    [36]

    Momma K, Izumi F 2008 J. Appl. Crystallogr. 41 653

  • [1] Xu Can, Zhang Xiao-Fang, Chen Liang. Electronic properties of MgO nanotube clusters studied with density functional theory. Acta Physica Sinica, 2009, 58(3): 1603-1607. doi: 10.7498/aps.58.1603
    [2] Wei Jie, Chen Yan-Jun, Xu Zhuo. Study on the size-dependent magnetic properties of multiferroic BiFeO3 nanoparticles. Acta Physica Sinica, 2012, 61(5): 057502. doi: 10.7498/aps.61.057502
    [3] Liu Jin-Hong, Li Fa-Shen, Tian Geng-Fang, Li Ji-Chen, Zhang Ling-Fei. Structure and magnetic properties of NiFe2O4 nanoparticles prepared by low-temperature solid-state reaction. Acta Physica Sinica, 2007, 56(10): 6050-6055. doi: 10.7498/aps.56.6050
    [4] Luo Yi, Zhao Guo-Ping, Yang Hai-Tao, Song Ning-Ning, Ren Xiao, Ding Hao-Feng, Cheng Zhao-Hua. Exchange bias effect in single crystalline phase MnO nanoparticles. Acta Physica Sinica, 2013, 62(17): 176102. doi: 10.7498/aps.62.176102
    [5] Wang Li, Wang Hai-Bo, Wang Tao, Li Fa-Shen. Structure, magnetic properties and atomic immigration of CoFe2O4 nanoparticles. Acta Physica Sinica, 2006, 55(12): 6515-6521. doi: 10.7498/aps.55.6515
    [6] Zhao Xin-Xin, Tao Xiang-Ming, Chen Wen-Bin, Cai Jian-Qiu, Tan Ming-Qiu. Magnetism of 3d transition metal monolayers on Pd(001) surface: density functional theory study. Acta Physica Sinica, 2005, 54(12): 5849-5854. doi: 10.7498/aps.54.5849
    [7] Wang Xin-Liang, Di Qin-Feng, Zhang Ren-Liang, Ding Wei-Peng, Gong Wei, Chen Yi-Chong. The strong hydrophobic properties on nanoparticles adsorbed core surfaces. Acta Physica Sinica, 2012, 61(21): 216801. doi: 10.7498/aps.61.216801
    [8] Meng Li-Jun, Zhang Kai-Wang, Zhong Jian-Xin. Molecular dynamics simulation of formation of silicon nanoparticles on surfaces of carbon nanotubes. Acta Physica Sinica, 2007, 56(2): 1009-1013. doi: 10.7498/aps.56.1009
    [9] Chen Hui-Min, Liu En-Long. Theoretical calculation of molar heat capacity at constant pressureof nanoparticle and nanocrystalline. Acta Physica Sinica, 2011, 60(6): 066501. doi: 10.7498/aps.60.066501
    [10] Zhang Xuan, Zhang Tian-Ci, Ge Ji-Jiang, Jiang Ping, Zhang Gui-Cai. Effect of surfactants on adsorption behavior of nanoparicles at gas-liquid surface. Acta Physica Sinica, 2020, 69(2): 026801. doi: 10.7498/aps.69.20190756
    [11] Liu Dong-Qi, Chang Yan-Chun, Liu Gang-Qin, Pan Xin-Yu. Electron spin studies of nitrogen vacancy centers in nanodiamonds. Acta Physica Sinica, 2013, 62(16): 164208. doi: 10.7498/aps.62.164208
    [12] Han Min, Lin Tao, Wan Neng, Chen Kun-Ji, Xu Jun. Synthesis,structures and luminescence properties of SnO2 nanoparticles. Acta Physica Sinica, 2009, 58(8): 5821-5825. doi: 10.7498/aps.58.5821
    [13] Huang Xiao-Lin, Hou Li-Zhen, Yu Bo-Wen, Chen Guo-Liang, Wang Shi-Liang, Ma Liang, Liu Xin-Li, He Yue-Hui. Preparation, formation mechanism and optical properties of C/Cu shell/core nanostructures. Acta Physica Sinica, 2013, 62(10): 108102. doi: 10.7498/aps.62.108102
    [14] Yan Xiao-Qin, Liu Zu-Qin, Tang Dong-Sheng, Ci Li-Jie, Liu Dong-Fang, Zhou Zhen-Ping, Liang Ying-Xin, Yuan Hua-Jun, Zhou Wei-Ya, Wang Gang. Effects of substrates on silicon oxide nanowires growth by thermal chemical vapor deposition. Acta Physica Sinica, 2003, 52(2): 454-458. doi: 10.7498/aps.52.454
    [15] Huang Cong-Liang, Feng Yan-Hui, Zhang Xin-Xin, Li Jing, Wang Ge, Chou Ai-Hui. Thermal conductivity of metallic nanoparticle. Acta Physica Sinica, 2013, 62(2): 026501. doi: 10.7498/aps.62.026501
    [16] Zhang Kai, Liu Yan-Hua, Gan Fu-Jun. Nucleation and coagulation of nanoparticles in a planar jet. Acta Physica Sinica, 2010, 59(6): 4084-4092. doi: 10.7498/aps.59.4084
    [17] WANG XUE-SEN, TANG JING-CHANG, WANG LEI. SCANNING TUNNELING MICROSCOPY STUDY OF Si GROWTH ON Si3N4/Si SURFACE. Acta Physica Sinica, 2001, 50(3): 517-522. doi: 10.7498/aps.50.517
    [18] Li Hui, Xie Er-Qing, Zhang Hong-Liang, Pan Xiao-Jun, Zhang Yong-Zhe. Optical properties of ZnO and MgxZn1-xO nanoparticles prepared by flame spray synthesis. Acta Physica Sinica, 2007, 56(6): 3584-3588. doi: 10.7498/aps.56.3584
    [19] Liu Li-Li, Chen Liang, Zhu Jian, Xu Zhong-Feng, Zhao Yong-Tao, Wang Yu-Yu, Xiao Guo-Qing. Highly charged ion beam-induced size modification of Au nanoparticles. Acta Physica Sinica, 2009, 58(6): 3833-3838. doi: 10.7498/aps.58.3833
    [20] Zang Du-Yang, Langevin Dominique, Zhang Yong-Jian. Rheological study of silica nanoparticle monolayers via two orthogonal Wilhelmy plates. Acta Physica Sinica, 2011, 60(7): 076801. doi: 10.7498/aps.60.076801
  • Citation:
Metrics
  • Abstract views:  1114
  • PDF Downloads:  760
  • Cited By: 0
Publishing process
  • Received Date:  21 September 2013
  • Accepted Date:  08 November 2013
  • Published Online:  05 February 2014

Magnetism of MgO nanoparticles

  • 1. Key Laborarory of Materials Physics, Institute of Solid-State Phyics, Hefei Institutes of Hefei Physical Science, Chinese Academy of Science, Hefei 230031, China
Fund Project:  Project supported by the National Basic Research Program of China (Grant No. 2012CB933702), the National Natural Science Foundation of China (Grant No. 11174284), and the Key Program of Joint Funds of the National Natural Science Foundation of China (Grant No. U1230202).

Abstract: MgO polycrystal is found to be weakly magnetic experimentally, although its single crystal is non magnetic. In this work, the magnetic properties of surfaces of crystal and nano-particles of MgO are studied by the first-principles density functional theory. The obtained results show that there are the oxygen-rich regions in all the magnetic surfaces discussed in this work, especially in the (111) surface with pure oxygen layer and the (114) surface with pure oxygen chains. Other surfaces with high Miller indices generally have the oxygen-rich regions. For MgO nano-particles, the facets with high Miller indices and the edges and vertexes formed by different orientation surfaces are oxygen-rich possibly and have strong magnetism. The itinerant magnetism is indentified for the magnetism on the surfaces of MgO crystal and the surfaces of MgO nano-particles. That the special MgO ∑ 7[111] grain boundary is not magnetic means that the magnetism of MgO grain boundary is weak if the chemical composition in grain-boundary region is slightly different from that in the crystal. It can be inferred that the magnetism of MgO polycrystal is mainly contributed by the polycrystal surface, the micro-pores, micro-voids and micro-cracks.

Reference (36)

Catalog

    /

    返回文章
    返回