Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The base current broadening effect and charge separation method of gate-controlled lateral PNP bipolar transistors

Ma Wu-Ying Wang Zhi-Kuan Lu Wu Xi Shan-Bin Guo Qi He Cheng-Fa Wang Xin Liu Mo-Han Jiang Ke

The base current broadening effect and charge separation method of gate-controlled lateral PNP bipolar transistors

Ma Wu-Ying, Wang Zhi-Kuan, Lu Wu, Xi Shan-Bin, Guo Qi, He Cheng-Fa, Wang Xin, Liu Mo-Han, Jiang Ke
PDF
Get Citation
  • In order to study the total dose effect and hardness assurance technology for the bipolar devices, we have designed and fabricated different gate-controlled lateral PNP bipolar transistors by various technologies, and preformed 60Co-γ low-dose rate irradiation. The test results show that: 1) Irradiation characteristics of the gate-controlled bipolar transistor are strongly dependent on the fabrication technology, and the passivation layer has a great influence on the irradiation response of the device. The device with a passivation layer will have more interface traps in ionizing radiation environments, and its resistance to ionizing irradiation is greatly weakened. 2) A domestic gated-controlled lateral PNP transistor exhibited a peak current broadening effect at low-dose rate irradiation. In this paper, we analyze the mechanism of the broadening effect, and put forward a new separation method for reducing the base current broadening effect, which not only provides the basis for the design of hardened devices, but also a powerful tool for the study of the enhanced low-dose rate sensitivity of the bipolar device.
    [1]

    Enlow E W, Pease R L, Combs W, Schrimpf R D, Nowlin R N 1991 IEEE Trans. Nucl. Sci. 38 1342

    [2]

    Fleetwood D M, Kosier S L, Nowlin R N, Schrimpf R D, Reber R A, DeLaus M, Winokur P S, Wei A, Combs W E, Pease R L 1994 IEEE Trans. Nucl. Sci. 41 1871

    [3]

    Zhai Y H, Li P, Zhang G J, Luo Y X, Fan X, Hu B, Li J H, Zhang J, Su P 2011 Acta Phys. Sin. 60 088501 (in Chinese)[翟亚红, 李平, 张国俊, 罗玉香, 范雪, 胡滨, 李俊宏, 张健, 束平 2011 物理学报 60 088501]

    [4]

    He B P, Yao Z B 2010 Acta Phys. Sin. 59 1985 (in Chinese)[何宝平, 姚志斌 2010 物理学报 59 1985]

    [5]

    Lu W, Ren D Y, Guo Q, Yu X F, He C F, Zhen Y Z, Wang Y Y 2009 Acta Phys. Sin. 58 5572 (in Chinese)[陆妩, 任迪远, 郭旗, 余学锋, 何承发, 郑玉展, 王义元 2009 物理学报 58 5572]

    [6]

    Wang Y Y, Lu Wu, Ren D Y, Guo Q, Yu X F, Ren D Y, He C F, G B 2011 Acta Phys. Sin. 60 096104 (in Chinese)[王义元, 陆妩, 任迪远, 郭旗, 余学峰, 何承发, 高博 2011 物理学报 60 096104]

    [7]

    Fleetwood D M 2013 IEEE Trans. Nucl. Sci. 60 1706

    [8]

    Li R M, Du L, Zhuang Y Q, Bao J L 2007 Acta Phys. Sin. 56 3400 (in Chinese)[李瑞珉, 杜磊, 庄奕琪, 包军林 2007 物理学报 56 3400]

    [9]

    Xi S B, Lu W, Wang Z K, Ren D Y, Zhou D, Wen L, Sun J 2012 Acta Phys. Sin. 61 236103 (in Chinese)[席善斌, 陆妩, 王志宽, 任迪远, 周东, 文林, 孙静 2012 物理学报 61 236103]

    [10]

    Xi S B, Lu W, Ren D Y, Zhou D, Wen L, Sun J, Wu X 2012 Acta Phys. Sin. 61 236103 (in Chinese)[席善斌, 陆妩, 任迪远, 周东, 文林, 孙静, 吴雪 2012 物理学报 61 236103])

    [11]

    McWhorter P J, Winokur P S 1986 Appl Phys. Lett. 48 133

    [12]

    Pease R, Emily D, H E Boesch 1985 IEEE Trans. Nucl. Sci. 32 3946

    [13]

    Chen X J, Barnaby H J, Pease R L, Schrimpf R D, Platteter D G, Dunham G 2004 IEEE Trans. Nucl. Sci. 51 3178

    [14]

    Ball D R, Schrimpf R D, Barnaby H J 2002 IEEE Trans. Nucl. Sci. 49 3185

    [15]

    Pease R L, Schrimpf R D, Fleetwood D M 2009 IEEE Trans. Nucl. Sci. 56 1894

    [16]

    Rashkeev S N, Cirba C R, Fleetwood D M, Schrimpf R D, Witczak S C, Michez A, Pantelides S T 2002 IEEE Trans. Nucl. Sci. 49 2650

    [17]

    Minson E, Sanchez I, Barnaby H J, Pease R L, Platteter D G, Dun-ham G 2004 IEEE Trans. Nucl. Sci. 51 3723

    [18]

    Chen X J, Barnaby H J, Pease R L, Schrimpf R D, Platteter D, Shaneyfelt M, Vermeire B 2005 IEEE Trans. Nucl. Sci. 52 2245

  • [1]

    Enlow E W, Pease R L, Combs W, Schrimpf R D, Nowlin R N 1991 IEEE Trans. Nucl. Sci. 38 1342

    [2]

    Fleetwood D M, Kosier S L, Nowlin R N, Schrimpf R D, Reber R A, DeLaus M, Winokur P S, Wei A, Combs W E, Pease R L 1994 IEEE Trans. Nucl. Sci. 41 1871

    [3]

    Zhai Y H, Li P, Zhang G J, Luo Y X, Fan X, Hu B, Li J H, Zhang J, Su P 2011 Acta Phys. Sin. 60 088501 (in Chinese)[翟亚红, 李平, 张国俊, 罗玉香, 范雪, 胡滨, 李俊宏, 张健, 束平 2011 物理学报 60 088501]

    [4]

    He B P, Yao Z B 2010 Acta Phys. Sin. 59 1985 (in Chinese)[何宝平, 姚志斌 2010 物理学报 59 1985]

    [5]

    Lu W, Ren D Y, Guo Q, Yu X F, He C F, Zhen Y Z, Wang Y Y 2009 Acta Phys. Sin. 58 5572 (in Chinese)[陆妩, 任迪远, 郭旗, 余学锋, 何承发, 郑玉展, 王义元 2009 物理学报 58 5572]

    [6]

    Wang Y Y, Lu Wu, Ren D Y, Guo Q, Yu X F, Ren D Y, He C F, G B 2011 Acta Phys. Sin. 60 096104 (in Chinese)[王义元, 陆妩, 任迪远, 郭旗, 余学峰, 何承发, 高博 2011 物理学报 60 096104]

    [7]

    Fleetwood D M 2013 IEEE Trans. Nucl. Sci. 60 1706

    [8]

    Li R M, Du L, Zhuang Y Q, Bao J L 2007 Acta Phys. Sin. 56 3400 (in Chinese)[李瑞珉, 杜磊, 庄奕琪, 包军林 2007 物理学报 56 3400]

    [9]

    Xi S B, Lu W, Wang Z K, Ren D Y, Zhou D, Wen L, Sun J 2012 Acta Phys. Sin. 61 236103 (in Chinese)[席善斌, 陆妩, 王志宽, 任迪远, 周东, 文林, 孙静 2012 物理学报 61 236103]

    [10]

    Xi S B, Lu W, Ren D Y, Zhou D, Wen L, Sun J, Wu X 2012 Acta Phys. Sin. 61 236103 (in Chinese)[席善斌, 陆妩, 任迪远, 周东, 文林, 孙静, 吴雪 2012 物理学报 61 236103])

    [11]

    McWhorter P J, Winokur P S 1986 Appl Phys. Lett. 48 133

    [12]

    Pease R, Emily D, H E Boesch 1985 IEEE Trans. Nucl. Sci. 32 3946

    [13]

    Chen X J, Barnaby H J, Pease R L, Schrimpf R D, Platteter D G, Dunham G 2004 IEEE Trans. Nucl. Sci. 51 3178

    [14]

    Ball D R, Schrimpf R D, Barnaby H J 2002 IEEE Trans. Nucl. Sci. 49 3185

    [15]

    Pease R L, Schrimpf R D, Fleetwood D M 2009 IEEE Trans. Nucl. Sci. 56 1894

    [16]

    Rashkeev S N, Cirba C R, Fleetwood D M, Schrimpf R D, Witczak S C, Michez A, Pantelides S T 2002 IEEE Trans. Nucl. Sci. 49 2650

    [17]

    Minson E, Sanchez I, Barnaby H J, Pease R L, Platteter D G, Dun-ham G 2004 IEEE Trans. Nucl. Sci. 51 3723

    [18]

    Chen X J, Barnaby H J, Pease R L, Schrimpf R D, Platteter D, Shaneyfelt M, Vermeire B 2005 IEEE Trans. Nucl. Sci. 52 2245

  • [1] He Bao-Ping, Chen Wei, Wang Gui-Zhen. A comparison of ionizing radiation damage in CMOS devices from 60Co Gamma rays, electrons and protons. Acta Physica Sinica, 2006, 55(7): 3546-3551. doi: 10.7498/aps.55.3546
    [2] Meng Kang, Jiang Sen-Lin, Hou Li-Na, Li Chan, Wang Kun, Ding Zhi-Bo, Yao Shu-De. Study of radiation damage in Mg+-implanted GaN. Acta Physica Sinica, 2006, 55(5): 2476-2481. doi: 10.7498/aps.55.2476
    [3] Lu Wu, Ren Di-Yuan, Guo Qi, Yu Xue-Feng, He Cheng-Fa, Zheng Yu-Zhan, Wang Yi-Yuan. Characteristics of high- and low-dose-rate damage for domestic npn transistors of various emitter areas. Acta Physica Sinica, 2009, 58(8): 5572-5577. doi: 10.7498/aps.58.5572
    [4] Ma Wu-Ying, Lu Wu, Guo Qi, He Cheng-Fa, Wu Xue, Wang Xin, Cong Zhong-Chao, Wang Bo, Maria. Analyses of ionization radiation damage and dose rate effect of bipolar voltage comparator. Acta Physica Sinica, 2014, 63(2): 026101. doi: 10.7498/aps.63.026101
    [5] Lu Wu, Ren Di-Yuan, Guo Qi, Yu Xue-Feng, He Cheng-Fa, Wang Yi-Yuan, Gao Bo. Degradation and dose rate effects of bipolar linearregulator on ionizing radiation. Acta Physica Sinica, 2011, 60(9): 096104. doi: 10.7498/aps.60.096104
    [6] Ma Wu-Ying, Yao Zhi-Bin, He Bao-Ping, Wang Zu-Jun, Liu Min-Bo, Liu Jing, Sheng Jiang-Kun, Dong Guan-Tao, Xue Yuan-Yuan. Radiation effect and degradation mechanism in 65 nm CMOS transistor. Acta Physica Sinica, 2018, 67(14): 146103. doi: 10.7498/aps.67.20172542
    [7] He Bao-Ping, Guo Hong-Xia, Gong Jian-Cheng, Wang Gui-Zhen, Luo Yin-Hong, Li Yong-Hong. Prediction of failure time for floating gate ROM devices at low dose rate in space radiation environment. Acta Physica Sinica, 2004, 53(9): 3125-3129. doi: 10.7498/aps.53.3125
    [8] Wu Xue, Lu Wu, Wang Xin, Xi Shan-Bin, Guo Qi, Li Yu-Dong. Total ionizing dose effect on 0.18 μm narrow-channel NMOS transistors. Acta Physica Sinica, 2013, 62(13): 136101. doi: 10.7498/aps.62.136101
    [9] Li Xing-Ji, Liu Chao-Ming, Sun Zhong-Liang, Lan Mu-Jie, Xiao Li-Yi, He Shi-Yu. Radiation damage induced by various particles on CC4013 devices. Acta Physica Sinica, 2013, 62(5): 058502. doi: 10.7498/aps.62.058502
    [10] Liu Hai-Jun, Tian Xiao-Bo, Li Qing-Jiang, Sun Zhao-Lin, Diao Jie-Tao. Research on radiation damage in titanium oxide memristors by Monte Carlo method. Acta Physica Sinica, 2015, 64(7): 078401. doi: 10.7498/aps.64.078401
  • Citation:
Metrics
  • Abstract views:  468
  • PDF Downloads:  437
  • Cited By: 0
Publishing process
  • Received Date:  23 November 2013
  • Accepted Date:  08 February 2014
  • Published Online:  05 June 2014

The base current broadening effect and charge separation method of gate-controlled lateral PNP bipolar transistors

  • 1. Key Laboratory of Functional Materials and Devices for Special Environments of CAS; Xinjiang Key Laboratory of Electronic Information Materials and Devices; Xinjiang Technical Institute of Physics & Chemistry of CAS, 40-1 South Beijing Road, Urumqi 830011, China;
  • 2. University of Chinese Academy of Sciences, Beijing 100049, China;
  • 3. National Laboratory of Analog ICs; Sichuan Institute of Solid-State Circuits, CETC, Chongqing 400060, China

Abstract: In order to study the total dose effect and hardness assurance technology for the bipolar devices, we have designed and fabricated different gate-controlled lateral PNP bipolar transistors by various technologies, and preformed 60Co-γ low-dose rate irradiation. The test results show that: 1) Irradiation characteristics of the gate-controlled bipolar transistor are strongly dependent on the fabrication technology, and the passivation layer has a great influence on the irradiation response of the device. The device with a passivation layer will have more interface traps in ionizing radiation environments, and its resistance to ionizing irradiation is greatly weakened. 2) A domestic gated-controlled lateral PNP transistor exhibited a peak current broadening effect at low-dose rate irradiation. In this paper, we analyze the mechanism of the broadening effect, and put forward a new separation method for reducing the base current broadening effect, which not only provides the basis for the design of hardened devices, but also a powerful tool for the study of the enhanced low-dose rate sensitivity of the bipolar device.

Reference (18)

Catalog

    /

    返回文章
    返回