Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Computer simulation of electric properties of metal-ferroelectric-substrate structured ferroelectric field effect transistor under ionizing radiation

Wu Chuan-Lu Ma Ying Jiang Li-Mei Zhou Yi-Chun Li Jian-Cheng

Computer simulation of electric properties of metal-ferroelectric-substrate structured ferroelectric field effect transistor under ionizing radiation

Wu Chuan-Lu, Ma Ying, Jiang Li-Mei, Zhou Yi-Chun, Li Jian-Cheng
PDF
Get Citation
  • This article uses the Miller model to simulate the ferroelectric polarization of the metal-ferroelectrics-insulator-substrate (MFIS) structured ferroelectric field effect transistor (FeFET), interfacial charge concentration, and charge migration rate under ionizing radiation. The capacitance and source-drain current at different total dose and different dose rate are calculated. Results show that the total dose of 0.1 MGy changes slightly the source leakage current and capacitance of the FeFET, and the total dose of 1 MGy leads to a larger variation in these quantities. When the radiation dose rate is varied, the minimal changes in the drain-source current and capacitance are observed. These results suggest that FeFET has a relatively large radiation hardness.
    • Funds: Project suppoted by the National Natural Science Foundation of China (Grant Nos. 11172257, 61176093).
    [1]

    Philpy S T, Kamp D A, DeVilbiss A D, Isacson A F, Derbenwick G F 2000 Aerospace Conference Proceedings Big Sky MT, America, March 18-25, 2000 p377

    [2]

    Verbeck C, Gaucher P 1993 Radiation and its Effects on Components and Systems St. Malo, France, September 13-16, 1993 p166

    [3]

    MacLeodT C, Sims W H, Varnavas K A, Sayyah R, Ho F D 2009 Non-Volatile Memory Technology Symposium Portland America, October 25-28, 2009 p24

    [4]

    Zhang X Y, Guo Q, Lu W, Zhang X F, Zheng Q W, Cui J W, Li Y D, Zhou D 2013 Acta. Phys. Sin. 62 156107 (in Chinese) [张兴尧, 郭旗, 陆妩, 张孝富, 郑齐文, 崔江维, 李豫东, 周东 2013 物理学报 62 156107]

    [5]

    Schwank J R, Nasby R D, Miller S L, Rodgers M S, Dressendorfer P V 1990 IEEE T. Nucl. Sci. 37 1703

    [6]

    Liu B, Ma Y, Zhou Y, Li J 2013 Radiat Eff. Defects Solids 168 115

    [7]

    Usher T D 1998 APS March Meeting Abstracts Los Angeles, America, March 16-20, 1998 p1709

    [8]

    Li X J, Geng H B, Lan M J, Yang D Z, He S Y, Liu C M 2010 Chin Phys. B 19 056103

    [9]

    Soubra M, Cygler J, Mackay G 1994 Med. Phys. 21 567

    [10]

    He B P, Zhang F Q, Yao Z B 2007 Chin. J. Comput. Phys. 1 109 (in Chinese) [何宝平, 张凤祁, 姚志斌 2007 计算物理 1 109]

    [11]

    Sun P, Du L, Chen W H, He L, Zhang X F 2012 Acta. Phys. Sin. 61 107803 (in Chinese) [孙鹏, 杜磊, 陈文豪, 何亮, 张晓芳 2012 物理学报 61 107803]

    [12]

    Li Z, Xiao Y G, Tang M H, Chen J W, Ding H, Yan S A, Zhou Y C 2014 Mater. Sci. Forum 787 247

    [13]

    Miller S L, McWhorter P J 1992 J. Appl. Phys. 72 5999

    [14]

    Guo Y, Chen J J, He Y B, Liang B, Liu B W 2013 Chin Phys. B 22 046103

    [15]

    Yan S A, Tang M H, Zhao W, Guo H X, Zhang W L, Xu X Y, Wang X D, Ding H, Chen J W, Li Z, Zhou Y C 2014 Chin Phys. B 23 046103

    [16]

    Chauhan R K, Chakrabarti P 2002 Microelectron. J. 33 197

    [17]

    Inza M G, Lipovetzky J, Carbonetto S, Salomone L S, Redin E, Faigon A 2012 Technology and Applicationsin Micro-Nanoelectronics Cordoba, Argentina, August 9-10, 2012 p79

    [18]

    Brews J R 1981 Appl. Solid State Science (New York: Academic Press) pp11-120

    [19]

    Takagi S I, Toriumi A, Iwase M, Tango H 1994 IEEE T. Electron Dev. 41 2357

    [20]

    Miller S L, Nasby R D, Schwank J R, Rodgers M S, Dressendorfer P V 1990 J. Appl. Phys. 68 6463

    [21]

    Shi Q, Ma Y, Li Y, Zhou Y 2011 Nucl. Instrum. Methods Phys. Res. Sect. B 269 452

  • [1]

    Philpy S T, Kamp D A, DeVilbiss A D, Isacson A F, Derbenwick G F 2000 Aerospace Conference Proceedings Big Sky MT, America, March 18-25, 2000 p377

    [2]

    Verbeck C, Gaucher P 1993 Radiation and its Effects on Components and Systems St. Malo, France, September 13-16, 1993 p166

    [3]

    MacLeodT C, Sims W H, Varnavas K A, Sayyah R, Ho F D 2009 Non-Volatile Memory Technology Symposium Portland America, October 25-28, 2009 p24

    [4]

    Zhang X Y, Guo Q, Lu W, Zhang X F, Zheng Q W, Cui J W, Li Y D, Zhou D 2013 Acta. Phys. Sin. 62 156107 (in Chinese) [张兴尧, 郭旗, 陆妩, 张孝富, 郑齐文, 崔江维, 李豫东, 周东 2013 物理学报 62 156107]

    [5]

    Schwank J R, Nasby R D, Miller S L, Rodgers M S, Dressendorfer P V 1990 IEEE T. Nucl. Sci. 37 1703

    [6]

    Liu B, Ma Y, Zhou Y, Li J 2013 Radiat Eff. Defects Solids 168 115

    [7]

    Usher T D 1998 APS March Meeting Abstracts Los Angeles, America, March 16-20, 1998 p1709

    [8]

    Li X J, Geng H B, Lan M J, Yang D Z, He S Y, Liu C M 2010 Chin Phys. B 19 056103

    [9]

    Soubra M, Cygler J, Mackay G 1994 Med. Phys. 21 567

    [10]

    He B P, Zhang F Q, Yao Z B 2007 Chin. J. Comput. Phys. 1 109 (in Chinese) [何宝平, 张凤祁, 姚志斌 2007 计算物理 1 109]

    [11]

    Sun P, Du L, Chen W H, He L, Zhang X F 2012 Acta. Phys. Sin. 61 107803 (in Chinese) [孙鹏, 杜磊, 陈文豪, 何亮, 张晓芳 2012 物理学报 61 107803]

    [12]

    Li Z, Xiao Y G, Tang M H, Chen J W, Ding H, Yan S A, Zhou Y C 2014 Mater. Sci. Forum 787 247

    [13]

    Miller S L, McWhorter P J 1992 J. Appl. Phys. 72 5999

    [14]

    Guo Y, Chen J J, He Y B, Liang B, Liu B W 2013 Chin Phys. B 22 046103

    [15]

    Yan S A, Tang M H, Zhao W, Guo H X, Zhang W L, Xu X Y, Wang X D, Ding H, Chen J W, Li Z, Zhou Y C 2014 Chin Phys. B 23 046103

    [16]

    Chauhan R K, Chakrabarti P 2002 Microelectron. J. 33 197

    [17]

    Inza M G, Lipovetzky J, Carbonetto S, Salomone L S, Redin E, Faigon A 2012 Technology and Applicationsin Micro-Nanoelectronics Cordoba, Argentina, August 9-10, 2012 p79

    [18]

    Brews J R 1981 Appl. Solid State Science (New York: Academic Press) pp11-120

    [19]

    Takagi S I, Toriumi A, Iwase M, Tango H 1994 IEEE T. Electron Dev. 41 2357

    [20]

    Miller S L, Nasby R D, Schwank J R, Rodgers M S, Dressendorfer P V 1990 J. Appl. Phys. 68 6463

    [21]

    Shi Q, Ma Y, Li Y, Zhou Y 2011 Nucl. Instrum. Methods Phys. Res. Sect. B 269 452

  • [1] The physics-based model of AlGaN/GaN high electron mobility transistor outer fringing capacitances. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191931
    [2] Investigate the effect of source-drain conduction in single-event transient on nanoscale bulk fin field effect transistor. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191896
  • Citation:
Metrics
  • Abstract views:  356
  • PDF Downloads:  469
  • Cited By: 0
Publishing process
  • Received Date:  18 May 2014
  • Accepted Date:  24 June 2014
  • Published Online:  05 November 2014

Computer simulation of electric properties of metal-ferroelectric-substrate structured ferroelectric field effect transistor under ionizing radiation

  • 1. Faculty of Materials, Optoelectronics and Physics, Xiangtan University, Xiangtan 411105, China;
  • 2. Key Laboratory of Low Dimensional Materials & Application Technology, Ministry of Education, Xiangtan 411105, China;
  • 3. School of Electronic Science and Engineering, National University of Defense Technology, Changsha, Hunan 410073, China
Fund Project:  Project suppoted by the National Natural Science Foundation of China (Grant Nos. 11172257, 61176093).

Abstract: This article uses the Miller model to simulate the ferroelectric polarization of the metal-ferroelectrics-insulator-substrate (MFIS) structured ferroelectric field effect transistor (FeFET), interfacial charge concentration, and charge migration rate under ionizing radiation. The capacitance and source-drain current at different total dose and different dose rate are calculated. Results show that the total dose of 0.1 MGy changes slightly the source leakage current and capacitance of the FeFET, and the total dose of 1 MGy leads to a larger variation in these quantities. When the radiation dose rate is varied, the minimal changes in the drain-source current and capacitance are observed. These results suggest that FeFET has a relatively large radiation hardness.

Reference (21)

Catalog

    /

    返回文章
    返回