Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Developments of c-Si1-xGex:H thin films as near-infrared absorber for thin film silicon solar cells

Cao Yu Xue Lei Zhou Jing Wang Yi-Jun Ni Jian Zhang Jian-Jun

Developments of c-Si1-xGex:H thin films as near-infrared absorber for thin film silicon solar cells

Cao Yu, Xue Lei, Zhou Jing, Wang Yi-Jun, Ni Jian, Zhang Jian-Jun
PDF
Get Citation
  • Hydrogenated microcrystalline silicon germanium (c-Si1-xGex:H) thin films have been developed as alternative bottom sub-cell absorbers for multi-junction thin film silicon solar cells due to their narrower band-gaps and higher absorption coefficients than conventional hydrogenated microcrystalline silicon (c-Si:H) thin films. However, since the structure complexity was increased a lot by Ge incorporation, the influences of c-Si1-xGex:H film properties on Ge composition have not been understood yet. In this work, c-Si1-xGex:H thin films with various Ge content and similar crystalline volume fraction are fabricated by radio frequency plasma-enhanced chemical vapor deposition (RF-PECVD). The evolutions of c-Si1-xGex:H material properties by Ge incorporation are characterized by X-ray fluorescence spectrometry, Raman spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, absorption coefficient spectrum, and conductivity measurement. The results show that the properties of c-Si1-xGex:H thin films are strongly determined by Ge content. With the increase of Ge content, the absorption coefficient, (111) grain size, microstructure factor, and dark conductivity of c-Si1-xGex:H thin films increase, while the H content, (220) grain size, and photosensitivity of c-Si1-xGex:H thin film decrease. Then, c-Si1-xGex:H is used as the intrinsic layer in the single junction solar cells. The performances of c-Si1-xGex:H solar cells with different Ge content and two types of transparent conductive oxide (SnO2 and ZnO) substrates are systematically studied. The results indicate that although c-Si1-xGex:H thin films become more defective and less compact with Ge incorporation, c-Si1-xGex:H solar cells exhibit a significant improvement in near-infrared response, especially under the circumstances of thin cell thickness and inefficient light trapping structure. Meanwhile, by using ZnO substrates, initial efficiencies of 7.15% (Jsc=22.6 mA/cm2, Voc=0.494 V, FF=64.0%) and 7.01% (Jsc=23.3 mA/cm2, Voc=0.482 V, FF=62.4%) are achieved by c-Si0.9Ge0.1:H solar cell and c-Si0.73Ge0.27:H solar cell, respectively. Furthermore, the c-Si0.73Ge0.27:H solar cell is used as the bottom sub-cell of the double-junction solar cell, and a Jsc.bottom of 12.30 mA/cm2 can be obtained with the bottom sub-cell thickness as thin as 800 nm, which is even higher than that of c-Si:H bottom sub-cell with 1700 nm thickness. Finally, an initial efficiency of 10.28% is achieved in an a-Si:H/c-Si0.73Ge0.27:H double junction cell structure. It is demonstrated that by using the c-Si1-xGex:H solar cell as the bottom sub-cell in multi-junction thin film silicon solar cells, a higher tandem cell performance can be achieved with a thin thickness, which has a great potential for cost-effective photovoltaics.
      Corresponding author: Zhang Jian-Jun, jjzhang@nankai.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61377031, 51442002, 61404073) and the Twelfth Five-Year' Scientific and the Technological Research Project of the Education Department of Jilin Province, China (Grant No. 2015253).
    [1]

    Shah A, Torres P, Tscharner R, Wyrsch N, Keppner H 1999 Science 285 692

    [2]

    Kang D W, Chowdhury A, Sichanugrist P, Abe Y, Konishi H, Tsuda Y, Shinagawa T, Tokioka H, Fuchigami H, Konagai M 2015 Curr. Appl. Phys. 15 1022

    [3]

    Schttauf J W, Niesen B, Lfgren L, Bonnet-Eymard M, Stuckelberger M, Hnni S, Boccard M, Bugnon G, Despeisse M, Haug F J, Meillaud F, Ballif C 2015 Sol. Energy Mater. Sol. Cells 133 163

    [4]

    Kim S, Chung J W, Lee H, Park J, Heo Y, Lee H M 2013 Sol. Energy Mater. Sol. Cells 119 26

    [5]

    Yan B, Yue G, Sivec L, Yang J, Guha S, Jiang C 2011 Appl. Phys. Lett. 99 113512

    [6]

    Sai H, Matsui T, Koida T, Matsubara K, Kondo M, Sugiyama S, Katayama H, Takeuchi Y, Yoshida I 2015 Appl. Phys. Lett. 106 213902

    [7]

    Ganguly G, Ikeda T, Nishimiya T, Saitoh K, Kondo M 1996 Appl. Phys. Lett. 69 4224

    [8]

    Ni J, Liu Q, Zhang J J, Ma J, Wang H, Zhang X D, Zhao Y 2014 Sol. Energy Mater. Sol. Cells 126 6

    [9]

    Zhang L P, Zhang J J, Zhang X, Shang Z R, Hu Z X, Zhang Y P, Geng X H, Zhao Y 2008 Acta Phys. Sin. 57 7338 (in Chinese) [张丽平, 张建军, 张鑫, 尚泽仁, 胡增鑫, 张亚萍, 耿新华, 赵颖 2008 物理学报 57 7338]

    [10]

    Boshta M, Alavi B, Braunstein R, Brner K, Dalal V L 2005 Sol. Energy Mater. Sol. Cells 87 387

    [11]

    Cao Y, Zhang J J, Li T W, Huang Z H, Ma J, Ni J, Geng X H, Zhao Y 2013 Acta Phy. Sin. 62 036102 (in Chinese) [曹宇, 张建军, 李天微, 黄振华, 马峻, 倪牮, 耿新华, 赵颖 2013 物理学报 62 036102]

    [12]

    Cao Y, Zhang J J, Li T W, Huang Z H, Ma J, Yang X, Ni J, Geng X H, Zhao Y 2013 J. Semicond. 34 034008

    [13]

    Cao Y, Zhou J, Wang Y J, Ni J, Zhang J J 2015 J. Alloys Compd. 632 456

    [14]

    Matsui T, Chang C W, Takada T, Isomura M, Fujiwara H, Kondo M 2008 Appl. Phys. Express 1 031501

    [15]

    Cao Y, Zhang J J, Li C, Li T W, Huang Z H, Ni J, Hu Z Y, Geng X H, Zhao Y 2013 Sol. Energy Mater. Sol. Cells 114 161

    [16]

    Zhang J J, Shimizu K, Zhao Y, Geng X H, Hanna J 2006 Phys. Status Solidi A 203 760

    [17]

    Kim S, Park C, Lee J C, Chob J S, Kim Y 2013 Curr. Appl. Phys. 13 457

    [18]

    Tang Z, Wang W, Wang D, Liu D, Liu Q, He D 2010 J. Alloys Compd. 504 403

    [19]

    Krause M, Stiebig H, Carius R, Zastrow U, Bay H, Wagner H 2002 J. Non-Cryst. Solids 299-302 158

    [20]

    Cao Y, Zhang J J, Yan G G, Ni J, Li T W, Huang Z H, Zhao Y 2014 Acta Phys. Sin. 63 076801 (in Chinese) [曹宇, 张建军, 严干贵, 倪牮, 李天微, 黄振华, 赵颖 2014 物理学报 63 076801]

    [21]

    Podraza N J, Wronski C R, Collins R W 2006 J. Non-Cryst. Solids 352 1263

    [22]

    Isomura M, Nakahata K, Shima M, Taira S, Wakisaka K, Tanaka M, Kiyama S 2002 Sol. Energy Mater. Sol. Cells 74 519

    [23]

    Vallat-Sauvain E, Kroll U, Meier J, Shah A, Pohl J 2000 J. Appl. Phys. 87 3137

    [24]

    Kim S, Park C, Lee J C, Cho J S, Kim Y 2013 Thin Solid Films 534 214

    [25]

    Moutinho H R, Jiang C S, Perkins J, Xu Y, Nelson B P, Jones K M, Romero M J, Al-Jassim M M 2003 Thin Solid Films 430 135

    [26]

    Kamiya T, Nakahata K, Tan Y T, Durrani Z A K, Shimizu I 2001 J. Appl. Phys. 89 6265

    [27]

    Guo L, Lin R 2000 Thin Solid Films 376 249

    [28]

    Das R, Jana T, Ray S 2005 Sol. Energy Mater. Sol. Cells 86 207

  • [1]

    Shah A, Torres P, Tscharner R, Wyrsch N, Keppner H 1999 Science 285 692

    [2]

    Kang D W, Chowdhury A, Sichanugrist P, Abe Y, Konishi H, Tsuda Y, Shinagawa T, Tokioka H, Fuchigami H, Konagai M 2015 Curr. Appl. Phys. 15 1022

    [3]

    Schttauf J W, Niesen B, Lfgren L, Bonnet-Eymard M, Stuckelberger M, Hnni S, Boccard M, Bugnon G, Despeisse M, Haug F J, Meillaud F, Ballif C 2015 Sol. Energy Mater. Sol. Cells 133 163

    [4]

    Kim S, Chung J W, Lee H, Park J, Heo Y, Lee H M 2013 Sol. Energy Mater. Sol. Cells 119 26

    [5]

    Yan B, Yue G, Sivec L, Yang J, Guha S, Jiang C 2011 Appl. Phys. Lett. 99 113512

    [6]

    Sai H, Matsui T, Koida T, Matsubara K, Kondo M, Sugiyama S, Katayama H, Takeuchi Y, Yoshida I 2015 Appl. Phys. Lett. 106 213902

    [7]

    Ganguly G, Ikeda T, Nishimiya T, Saitoh K, Kondo M 1996 Appl. Phys. Lett. 69 4224

    [8]

    Ni J, Liu Q, Zhang J J, Ma J, Wang H, Zhang X D, Zhao Y 2014 Sol. Energy Mater. Sol. Cells 126 6

    [9]

    Zhang L P, Zhang J J, Zhang X, Shang Z R, Hu Z X, Zhang Y P, Geng X H, Zhao Y 2008 Acta Phys. Sin. 57 7338 (in Chinese) [张丽平, 张建军, 张鑫, 尚泽仁, 胡增鑫, 张亚萍, 耿新华, 赵颖 2008 物理学报 57 7338]

    [10]

    Boshta M, Alavi B, Braunstein R, Brner K, Dalal V L 2005 Sol. Energy Mater. Sol. Cells 87 387

    [11]

    Cao Y, Zhang J J, Li T W, Huang Z H, Ma J, Ni J, Geng X H, Zhao Y 2013 Acta Phy. Sin. 62 036102 (in Chinese) [曹宇, 张建军, 李天微, 黄振华, 马峻, 倪牮, 耿新华, 赵颖 2013 物理学报 62 036102]

    [12]

    Cao Y, Zhang J J, Li T W, Huang Z H, Ma J, Yang X, Ni J, Geng X H, Zhao Y 2013 J. Semicond. 34 034008

    [13]

    Cao Y, Zhou J, Wang Y J, Ni J, Zhang J J 2015 J. Alloys Compd. 632 456

    [14]

    Matsui T, Chang C W, Takada T, Isomura M, Fujiwara H, Kondo M 2008 Appl. Phys. Express 1 031501

    [15]

    Cao Y, Zhang J J, Li C, Li T W, Huang Z H, Ni J, Hu Z Y, Geng X H, Zhao Y 2013 Sol. Energy Mater. Sol. Cells 114 161

    [16]

    Zhang J J, Shimizu K, Zhao Y, Geng X H, Hanna J 2006 Phys. Status Solidi A 203 760

    [17]

    Kim S, Park C, Lee J C, Chob J S, Kim Y 2013 Curr. Appl. Phys. 13 457

    [18]

    Tang Z, Wang W, Wang D, Liu D, Liu Q, He D 2010 J. Alloys Compd. 504 403

    [19]

    Krause M, Stiebig H, Carius R, Zastrow U, Bay H, Wagner H 2002 J. Non-Cryst. Solids 299-302 158

    [20]

    Cao Y, Zhang J J, Yan G G, Ni J, Li T W, Huang Z H, Zhao Y 2014 Acta Phys. Sin. 63 076801 (in Chinese) [曹宇, 张建军, 严干贵, 倪牮, 李天微, 黄振华, 赵颖 2014 物理学报 63 076801]

    [21]

    Podraza N J, Wronski C R, Collins R W 2006 J. Non-Cryst. Solids 352 1263

    [22]

    Isomura M, Nakahata K, Shima M, Taira S, Wakisaka K, Tanaka M, Kiyama S 2002 Sol. Energy Mater. Sol. Cells 74 519

    [23]

    Vallat-Sauvain E, Kroll U, Meier J, Shah A, Pohl J 2000 J. Appl. Phys. 87 3137

    [24]

    Kim S, Park C, Lee J C, Cho J S, Kim Y 2013 Thin Solid Films 534 214

    [25]

    Moutinho H R, Jiang C S, Perkins J, Xu Y, Nelson B P, Jones K M, Romero M J, Al-Jassim M M 2003 Thin Solid Films 430 135

    [26]

    Kamiya T, Nakahata K, Tan Y T, Durrani Z A K, Shimizu I 2001 J. Appl. Phys. 89 6265

    [27]

    Guo L, Lin R 2000 Thin Solid Films 376 249

    [28]

    Das R, Jana T, Ray S 2005 Sol. Energy Mater. Sol. Cells 86 207

  • [1] He Su-Ming, Dai Shan-Shan, Luo Xiang-Dong, Zhang Bo, Wang Jin-Bin. Preparation of SiON film by plasma enhanced chemical vapor deposition and passivation on Si. Acta Physica Sinica, 2014, 63(12): 128102. doi: 10.7498/aps.63.128102
    [2] Zheng Xin-Xia, Zhang Xiao-Dan, Yang Su-Su, Wang Guang-Hong, Xu Sheng-Zhi, Wei Chang-Chun, Sun Jian, Geng Xin-Hua, Xiong Shao-Zhen, Zhao Ying. a-Si ∶H/a-Si ∶H/μc-Si ∶H triple junction solar cells. Acta Physica Sinica, 2011, 60(6): 068801. doi: 10.7498/aps.60.068801
    [3] Tan Zai-Shang, Wu Xiao-Meng, Fan Zhong-Yong, Ding Shi-Jin. Effect of thermal annealing on the structure and properties of plasma enhanced chemical vapor deposited SiCOH film. Acta Physica Sinica, 2015, 64(10): 107701. doi: 10.7498/aps.64.107701
    [4] Chen Pei-Zhuan, Hou Guo-Fu, Suo Song, Ni Jian, Zhang Jian-Jun, Zhang Xiao-Dan, Zhao Ying. Simulation, design and fabrication of one-dimensional photonic crystal back reflector for silicon thin film solar cell. Acta Physica Sinica, 2014, 63(12): 128801. doi: 10.7498/aps.63.128801
    [5] Zhang Xiao-Dan, Sun Fu-He, Xu Sheng-Zhi, Wang Guang-Hong, Wei Chang-Chun, Sun Jian, Hou Guo-Fu, Geng Xin-Hua, Xiong Shao-Zhen, Zhao Ying. Performance optimization of p-i-n type microcrystalline silicon thin films solar cells deposited in single chamber. Acta Physica Sinica, 2010, 59(2): 1344-1348. doi: 10.7498/aps.59.1344
    [6] Yu Xiao-Ming, Zhao Jing, Hou Guo-Fu, Zhang Jian-Jun, Zhang Xiao-Dan, Zhao Ying. Investigation of light trapping structure and performance in PIN-type and NIP-type thin film silicon solar cells. Acta Physica Sinica, 2013, 62(12): 120101. doi: 10.7498/aps.62.120101
    [7] Song Jie, Guo Yan-Qing, Wang Xiang, Ding Hong-Lin, Huang Rui. Influence of excitation frequency on the growth properties of nanocrystalline silicon films with high hydrogen dilution. Acta Physica Sinica, 2010, 59(10): 7378-7382. doi: 10.7498/aps.59.7378
    [8] Yuan He, Sun Chang-Zheng, Xu Jian-Ming, Wu Qing, Xiong Bing, Luo Yi. Design and fabrication of multilayer antireflection coating for optoelectronic devices by plasma enhanced chemical vapor deposition. Acta Physica Sinica, 2010, 59(10): 7239-7244. doi: 10.7498/aps.59.7239
    [9] Chen Pei-Zhuan, Yu Li-Yuan, Niu Ping-Juan, Fu Xian-Song, Yang Guang-Hua, Zhang Jian-Jun, Hou Guo-Fu. Numerical study on conical two-dimensional photonic crystal in silicon thin-film solar cells. Acta Physica Sinica, 2018, 67(2): 028802. doi: 10.7498/aps.67.20171689
    [10] Ji Ai-Ling, Ma Li-Bo, Liu Cheng, Wang Yong-Qian. Low temperature fabrication of nanostructured Si-SiOx and Si-SiNx composite films and their photoluminescence features. Acta Physica Sinica, 2004, 53(11): 3818-3822. doi: 10.7498/aps.53.3818
    [11] Chen Zhao-Quan, Liu Ming-Hai, Liu Yu-Ping, Chen Wei, Luo Zhi-Qing, Hu Xi-Wei. Fabrication of transparent conductive AZO (ZnO:Al) film by plasma enhanced chemical vapor deposition. Acta Physica Sinica, 2009, 58(6): 4260-4266. doi: 10.7498/aps.58.4260
    [12] Zhang Xiao-Dan, Zhao Ying, Gao Yan-Tao, Zhu Feng, Wei Chang-Chun, Sun Jian, Wang Yan, Geng Xin-Hua, Xiong Shao-Zhen. Study of microcrystalline silicon solar cells fabricated by very high frequency plasma-enhanced chemical vapor deposition. Acta Physica Sinica, 2005, 54(4): 1899-1903. doi: 10.7498/aps.54.1899
    [13] Ding Yan-Li, Zhu Zhi-Li, Gu Jin-Hua, Shi Xin-Wei, Yang Shi-E, Gao Xiao-Yong, Chen Yong-Sheng, Lu Jing-Xiao. Effect of deposition rate on the scaling behavior of microcrystalline silicon films prepared by very high frequency-plasma enhanced chemical vapor deposition. Acta Physica Sinica, 2010, 59(2): 1190-1195. doi: 10.7498/aps.59.1190
    [14] Zeng Xiang-Bo, Wang Bo, Dai Song-Tao, Liao Xian-Bo, Diao Hong-Wei, Xiang Xian-Bi, Chang Xiu-Lan, Xu Yan-Yue, Hu Zhi-Hua, Hao Hui-Ying, Kong Guang-Lin. Boron-doped silicon nanowires grown by plasmaenhanced chemical vapor deposition . Acta Physica Sinica, 2004, 53(12): 4410-4413. doi: 10.7498/aps.53.4410
    [15] Hou Guo-Fu, Xue Jun-Ming, Yuan Yu-Jie, Zhang Xiao-Dan, Sun Jian, Chen Xin-Liang, Geng Xin-Hua, Zhao Ying. Key issues for high-efficiency silicon thin film solar cells prepared by RF-PECVD under high-pressure-depletion conditions. Acta Physica Sinica, 2012, 61(5): 058403. doi: 10.7498/aps.61.058403
    [16] YE CHAO, NING ZHAO-YUAN, CHENG SHAN-HUA, KANG JIAN. STUDY ON α-C∶F FILMS DEPOSITED BY ELECTRON CYCLOTRONRESONANCE PLASMA CHEMICAL VAPOR DEPOSITION. Acta Physica Sinica, 2001, 50(4): 784-789. doi: 10.7498/aps.50.784
    [17] LIU XIANG-NA, WU XIAO-WEI, BAO XI-MAO, HE YU-LIANG. PHOTOLUMINESCENCE FROM NANO-CRYSTALLITES OF SILICON FILMS PREPARED BY PECVD. Acta Physica Sinica, 1994, 43(6): 985-990. doi: 10.7498/aps.43.985
    [18] Ding Dong, Yang Shi-E, Chen Yong-Sheng, Gao Xiao-Yong, Gu Jin-Hua, Lu Jing-Xiao. Numerical simulation of light absorption enhancement in microcrystalline silicon solar cells with Al nanoparticle arrays. Acta Physica Sinica, 2015, 64(24): 248801. doi: 10.7498/aps.64.248801
    [19] Yu Wei, Liu Li-Hui, Hou Hai-Hong, Ding Xue-Cheng, Han Li, Fu Guang-Sheng. Silicon nitride films prepared by helicon wave plasam-enhanced chemical vapour deposition. Acta Physica Sinica, 2003, 52(3): 687-691. doi: 10.7498/aps.52.687
    [20] NING ZHAO-YUAN, CHENG SHAN-HUA, YE CHAO. CHEMICAL BONDING STRUCTURE OF FLUORINATED AMORPHOUS CARBON FILMS PREPARED BY ELECTRON CYCLOTRON RESONANCE PLASMA CHEMICAL VAPOR DEPOSITION. Acta Physica Sinica, 2001, 50(3): 566-571. doi: 10.7498/aps.50.566
  • Citation:
Metrics
  • Abstract views:  341
  • PDF Downloads:  191
  • Cited By: 0
Publishing process
  • Received Date:  09 March 2016
  • Accepted Date:  16 May 2016
  • Published Online:  20 July 2016

Developments of c-Si1-xGex:H thin films as near-infrared absorber for thin film silicon solar cells

    Corresponding author: Zhang Jian-Jun, jjzhang@nankai.edu.cn
  • 1. College of Electrical Engineering, Northeast Dianli University, Jilin 132012, China;
  • 2. College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China;
  • 3. College of Chemical Engineering, Northeast Dianli University, Jilin 132012, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 61377031, 51442002, 61404073) and the Twelfth Five-Year' Scientific and the Technological Research Project of the Education Department of Jilin Province, China (Grant No. 2015253).

Abstract: Hydrogenated microcrystalline silicon germanium (c-Si1-xGex:H) thin films have been developed as alternative bottom sub-cell absorbers for multi-junction thin film silicon solar cells due to their narrower band-gaps and higher absorption coefficients than conventional hydrogenated microcrystalline silicon (c-Si:H) thin films. However, since the structure complexity was increased a lot by Ge incorporation, the influences of c-Si1-xGex:H film properties on Ge composition have not been understood yet. In this work, c-Si1-xGex:H thin films with various Ge content and similar crystalline volume fraction are fabricated by radio frequency plasma-enhanced chemical vapor deposition (RF-PECVD). The evolutions of c-Si1-xGex:H material properties by Ge incorporation are characterized by X-ray fluorescence spectrometry, Raman spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, absorption coefficient spectrum, and conductivity measurement. The results show that the properties of c-Si1-xGex:H thin films are strongly determined by Ge content. With the increase of Ge content, the absorption coefficient, (111) grain size, microstructure factor, and dark conductivity of c-Si1-xGex:H thin films increase, while the H content, (220) grain size, and photosensitivity of c-Si1-xGex:H thin film decrease. Then, c-Si1-xGex:H is used as the intrinsic layer in the single junction solar cells. The performances of c-Si1-xGex:H solar cells with different Ge content and two types of transparent conductive oxide (SnO2 and ZnO) substrates are systematically studied. The results indicate that although c-Si1-xGex:H thin films become more defective and less compact with Ge incorporation, c-Si1-xGex:H solar cells exhibit a significant improvement in near-infrared response, especially under the circumstances of thin cell thickness and inefficient light trapping structure. Meanwhile, by using ZnO substrates, initial efficiencies of 7.15% (Jsc=22.6 mA/cm2, Voc=0.494 V, FF=64.0%) and 7.01% (Jsc=23.3 mA/cm2, Voc=0.482 V, FF=62.4%) are achieved by c-Si0.9Ge0.1:H solar cell and c-Si0.73Ge0.27:H solar cell, respectively. Furthermore, the c-Si0.73Ge0.27:H solar cell is used as the bottom sub-cell of the double-junction solar cell, and a Jsc.bottom of 12.30 mA/cm2 can be obtained with the bottom sub-cell thickness as thin as 800 nm, which is even higher than that of c-Si:H bottom sub-cell with 1700 nm thickness. Finally, an initial efficiency of 10.28% is achieved in an a-Si:H/c-Si0.73Ge0.27:H double junction cell structure. It is demonstrated that by using the c-Si1-xGex:H solar cell as the bottom sub-cell in multi-junction thin film silicon solar cells, a higher tandem cell performance can be achieved with a thin thickness, which has a great potential for cost-effective photovoltaics.

Reference (28)

Catalog

    /

    返回文章
    返回