搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不确定性的定量描述和熵不确定关系

张诗琪 杨化通

引用本文:
Citation:

不确定性的定量描述和熵不确定关系

张诗琪, 杨化通

Quantitative description of uncertainty andentropic uncertainty relation

Zhang Shi-Qi, Yang Hua-Tong
PDF
HTML
导出引用
  • 不确定性是量子系统的一个基本特征. 长期以来量子力学中一直采用可观测量的标准偏差来刻画这种不确定性. 但近年来, 研究者们通过分析一些具体例子发现, 用可观测量的测量结果的Shannon熵来描述这种不确定性更为合适. 形式上, Shannon熵也是一种更为一般的Rényi熵的极限形式. 本文从对未知态的测量结果的可重复概率的角度, 讨论了如何利用已有的测量结果预测新的测量结果, 以及可观测量的不确定度的定量表示的问题. 利用可观测量出现多次相同结果的概率定义了一种推广的Rényi熵, 并用这种推广的Rényi熵给出了Maassen-Uffink型熵不确定关系的一种简单证明.
    Uncertainty is a fundamental characteristic of quantum system. The degree of uncertainty of an observable has long been investigated by the standard deviation of the observable. In recent years, however, by analyzing some special examples, researchers have found that the Shannon entropy of the measurement outcomes of an observable is more suitable to quantify its uncertainty. Formally, Shannon entropy is a special limit of a more general Rényi entropy. In this paper, we discuss the problem of how to predict the measurement outcome of an observable by the existing measurement results of the observable, and how to quantitatively describe the uncertainty of the observable from the perspective of the repeatable probability of the measurement results of this observable in an unknown state. We will argue that if the same observable of different systems in the same state is repeatedly and independently measured many times, then the probability of obtaining an identical measurement result is a decaying function of the number of measurements of obtaining the same result, and the decay rate of the repeatable probability for obtaining the same measurement results and the repeatable number of measurements can represent the degree of uncertainty of the observable in this state. It means that the greater the uncertainty of an observable, the faster the repeatable probability decays with the number of repeatable measurements; conversely, the smaller the uncertainty, the slower the repeatable probability decays with the number of repeatable measurements. This observation enables us to give the Shannon entropy and the Rényi entropy of an observable uniformly by the functional relation between the repeatable probability and the number of repeatable measurements. We show that the Shannon entropy and the Rényi entropy can be formally regarded as the “decay index” of the repeatable probability with the number of repeatable measurements. In this way we also define a generalized Rényi entropy by the repeatable probability for consecutively observing identical results of an observable, and therefore we give a proof of the Maassen-Uffink type entropic uncertainty relation by using this generalized Rényi entropy. This method of defining entropy shows that entropic uncertainty relation is a quantitative limitation for the decay rate of the total probability for obtaining identical measurement results when we simultaneously measure two observables many times.
      通信作者: 杨化通, yanght653@nenu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11875011)资助的课题.
      Corresponding author: Yang Hua-Tong, yanght653@nenu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11875011).
    [1]

    Heisenberg W 1927 Z. Phys. 43 172 (in German)

    [2]

    海森堡 W (王正行, 李绍光, 张虞 译) 2017量子论的物理原理 (北京: 高等教育出版社) 第11页

    Heisenberg W (translated by Wang Z X, Li S G, Zhang Y) 2017 The Physical Principles of the Quantum Theory (Beijing: Higher Education Press) p11 (in Chinese)

    [3]

    Kennard E H 1927 Z. Phys. 44 326 (in German)

    [4]

    Robertson H P 1929 Phys. Rev. 34 163Google Scholar

    [5]

    Schrödinger E 1930 Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse 14 296

    [6]

    曾谨言 2013 量子力学(卷I) (北京: 科学出版社) 第142页

    Zeng J Y 2013 Quantum Mechanics (Vol. 1) (Beijing: Science Press) p142 (in Chinese)

    [7]

    Everett H 1957 Rev. Mod. Phys. 29 454Google Scholar

    [8]

    Hirschman I I 1957 Am. J. Math. 79 152Google Scholar

    [9]

    Beckner W 1975 Ann. Math. 102 159Google Scholar

    [10]

    Białynicki-Birula I 1984 Phys. Lett. A 103 253Google Scholar

    [11]

    Maassen H, Uffink J B M 1988 Phys. Rev. Lett. 60 1103Google Scholar

    [12]

    Deutsch D 1983 Phys. Rev. Lett. 50 631Google Scholar

    [13]

    Coles P J, Colbeck R, Yu L, Zwolak M 2012 Phys. Rev. Lett. 108 210405Google Scholar

    [14]

    Berta M, Christandl M, Colbeck R, Renes J M, Renner J 2010 Nat. Phys. 6 659Google Scholar

    [15]

    Coles P J, Berta M, Tomamichel M, Wehner S 2017 Rev. Mod. Phys. 89 015002Google Scholar

    [16]

    Wang D, Ming F, Song X K, Ye L, Chen J L 2020 Eur. Phys. J. C 80 800Google Scholar

    [17]

    Yang Y Y, Sun W Y, Shi W N, Ming F, Wang D, Ye L 2019 Front. Phys. 14 31601Google Scholar

    [18]

    Chen M N, Wang D, Ye L 2019 Phys. Lett. A 383 977Google Scholar

    [19]

    Wu L, Ye L, Wang D 2022 Phys. Rev. A 106 062219Google Scholar

    [20]

    Xie B F, Ming F, Wang D, Ye L, Chen J L 2021 Phys. Rev. A 104 062204Google Scholar

    [21]

    Ming F, Wang D, Fan X G, Shi W N, Ye L, Chen J L 2020 Phys. Rev. A 102 012206Google Scholar

    [22]

    Wu L, Song X K, Ye L, Wang D 2022 AAPPS Bull. 32 24Google Scholar

    [23]

    李丽娟, 明飞, 宋学科, 叶柳, 王栋 2022 物理学报 71 070302Google Scholar

    Li L J, Ming F, Song X K, Ye L, Wang D 2022 Acta. Phys. Sin. 71 070302Google Scholar

    [24]

    Shannon C E 1948 Bell Syst. Tech. J. 27 379Google Scholar

    [25]

    Rényi A 1961 Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability (Vol. 1): Contributions to the Theory of Statistics Berkeley, University of California Press, June 20–July 30, 1960, p547

    [26]

    Stein E M 1956 Trans. Amer. Math. Soc. 83 482Google Scholar

    [27]

    Thorin G O 1948 Ph. D. Dissertation (Lund: Lunds University)

  • 图 1  (a) 可观测量本征值的概率分布$ {p}_{i} $; (b) 可观测量的重复概率$ {P}_{x}(r) $; (c) 重复概率$ {P}_{x}(r) $的导数; (d) 概率分布P的范数$||P||_{r}$

    Fig. 1.  (a) Probability distribution $ {p}_{i} $ of the eigenvalues of an observable; (b) repeatable probability $ {P}_{x}\left(r\right) $ of the observable; (c) derivative of the repeatable probability $ {P}_{x}\left(r\right) $; (d) norm $||P||_{r}$ of the probability distribution $ P $.

    图 2  (a) 概率分布$ P $的Rényi熵$ {H}_{r}\left(P\right) $; (b) $ {H}_{1} $, $ {H}_{2} $, $ {H}_{3} $给出的重复概率的拟合曲线

    Fig. 2.  (a) Rényi entropy $ {H}_{r}\left(P\right) $ of the probability distribution $ P $; (b) fitting curve of the repeatable probability given by $ {H}_{1} $, $ {H}_{2} $, $ {H}_{3} $

  • [1]

    Heisenberg W 1927 Z. Phys. 43 172 (in German)

    [2]

    海森堡 W (王正行, 李绍光, 张虞 译) 2017量子论的物理原理 (北京: 高等教育出版社) 第11页

    Heisenberg W (translated by Wang Z X, Li S G, Zhang Y) 2017 The Physical Principles of the Quantum Theory (Beijing: Higher Education Press) p11 (in Chinese)

    [3]

    Kennard E H 1927 Z. Phys. 44 326 (in German)

    [4]

    Robertson H P 1929 Phys. Rev. 34 163Google Scholar

    [5]

    Schrödinger E 1930 Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse 14 296

    [6]

    曾谨言 2013 量子力学(卷I) (北京: 科学出版社) 第142页

    Zeng J Y 2013 Quantum Mechanics (Vol. 1) (Beijing: Science Press) p142 (in Chinese)

    [7]

    Everett H 1957 Rev. Mod. Phys. 29 454Google Scholar

    [8]

    Hirschman I I 1957 Am. J. Math. 79 152Google Scholar

    [9]

    Beckner W 1975 Ann. Math. 102 159Google Scholar

    [10]

    Białynicki-Birula I 1984 Phys. Lett. A 103 253Google Scholar

    [11]

    Maassen H, Uffink J B M 1988 Phys. Rev. Lett. 60 1103Google Scholar

    [12]

    Deutsch D 1983 Phys. Rev. Lett. 50 631Google Scholar

    [13]

    Coles P J, Colbeck R, Yu L, Zwolak M 2012 Phys. Rev. Lett. 108 210405Google Scholar

    [14]

    Berta M, Christandl M, Colbeck R, Renes J M, Renner J 2010 Nat. Phys. 6 659Google Scholar

    [15]

    Coles P J, Berta M, Tomamichel M, Wehner S 2017 Rev. Mod. Phys. 89 015002Google Scholar

    [16]

    Wang D, Ming F, Song X K, Ye L, Chen J L 2020 Eur. Phys. J. C 80 800Google Scholar

    [17]

    Yang Y Y, Sun W Y, Shi W N, Ming F, Wang D, Ye L 2019 Front. Phys. 14 31601Google Scholar

    [18]

    Chen M N, Wang D, Ye L 2019 Phys. Lett. A 383 977Google Scholar

    [19]

    Wu L, Ye L, Wang D 2022 Phys. Rev. A 106 062219Google Scholar

    [20]

    Xie B F, Ming F, Wang D, Ye L, Chen J L 2021 Phys. Rev. A 104 062204Google Scholar

    [21]

    Ming F, Wang D, Fan X G, Shi W N, Ye L, Chen J L 2020 Phys. Rev. A 102 012206Google Scholar

    [22]

    Wu L, Song X K, Ye L, Wang D 2022 AAPPS Bull. 32 24Google Scholar

    [23]

    李丽娟, 明飞, 宋学科, 叶柳, 王栋 2022 物理学报 71 070302Google Scholar

    Li L J, Ming F, Song X K, Ye L, Wang D 2022 Acta. Phys. Sin. 71 070302Google Scholar

    [24]

    Shannon C E 1948 Bell Syst. Tech. J. 27 379Google Scholar

    [25]

    Rényi A 1961 Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability (Vol. 1): Contributions to the Theory of Statistics Berkeley, University of California Press, June 20–July 30, 1960, p547

    [26]

    Stein E M 1956 Trans. Amer. Math. Soc. 83 482Google Scholar

    [27]

    Thorin G O 1948 Ph. D. Dissertation (Lund: Lunds University)

  • [1] 余敏, 郭有能. 关联退相位有色噪声通道下熵不确定关系的调控. 物理学报, 2024, 73(22): 220301. doi: 10.7498/aps.73.20241171
    [2] 颜冰, 黄思训, 冯径. 大气边界层模式中随机参数的反演与不确定性分析. 物理学报, 2018, 67(19): 199201. doi: 10.7498/aps.67.20181014
    [3] 李蕊轩, 张勇. 熵在非晶材料合成中的作用. 物理学报, 2017, 66(17): 177101. doi: 10.7498/aps.66.177101
    [4] 张伟, 张合, 陈勇, 张祥金, 徐孝彬. 脉冲激光四象限探测器测角不确定性统计分布. 物理学报, 2017, 66(1): 012901. doi: 10.7498/aps.66.012901
    [5] 徐红梅, 金永镐, 郭树旭. 电压控制不连续导电模式DC-DC变换器的熵特性研究. 物理学报, 2013, 62(24): 248401. doi: 10.7498/aps.62.248401
    [6] 冯维, 丁辉, 林昊, 罗辽复. λ噬菌体溶源/裂解转换调控与定态熵. 物理学报, 2012, 61(16): 168701. doi: 10.7498/aps.61.168701
    [7] 杨 波. 一般加速带电带磁的动态黑洞中标量场的熵. 物理学报, 2008, 57(4): 2614-2620. doi: 10.7498/aps.57.2614
    [8] 杨 波. 变加速直线运动黑洞的温度和Dirac场的熵. 物理学报, 2007, 56(11): 6772-6776. doi: 10.7498/aps.56.6772
    [9] 郑元强. 球对称动态黑洞Dirac场的熵的再讨论. 物理学报, 2007, 56(3): 1266-1270. doi: 10.7498/aps.56.1266
    [10] 韩亦文, 洪 云, 杨树政. 广义不确定关系与整体单极黑洞Dirac场的熵. 物理学报, 2007, 56(1): 10-14. doi: 10.7498/aps.56.10
    [11] 郑元强. 动态广义球对称含荷黑洞Dirac场的熵. 物理学报, 2006, 55(7): 3272-3276. doi: 10.7498/aps.55.3272
    [12] 牛振风, 刘文彪. 新Tortoise坐标变换与任意加速带电动态黑洞熵. 物理学报, 2005, 54(1): 475-480. doi: 10.7498/aps.54.475
    [13] 孙学锋, 景 玲, 刘文彪. 黑洞熵无截断薄层模型的改进与推广. 物理学报, 2004, 53(11): 4002-4006. doi: 10.7498/aps.53.4002
    [14] 王波波. 环面黑洞背景下量子场的熵. 物理学报, 2004, 53(7): 2401-2406. doi: 10.7498/aps.53.2401
    [15] 强丽娥, 高新芹, 赵 峥. 动态黑洞温度和熵的再讨论. 物理学报, 2004, 53(10): 3619-3626. doi: 10.7498/aps.53.3619
    [16] 孙鸣超. 起源于引力场的Vaidya-Bonner-de Sitter黑洞的量子熵. 物理学报, 2003, 52(6): 1350-1353. doi: 10.7498/aps.52.1350
    [17] 宋太平, 侯晨霞, 黄金书. 一般球对称带电蒸发黑洞的熵. 物理学报, 2002, 51(8): 1901-1906. doi: 10.7498/aps.51.1901
    [18] 张靖仪, 赵峥. 直线加速动态黑洞Dirac场的熵. 物理学报, 2002, 51(10): 2399-2406. doi: 10.7498/aps.51.2399
    [19] 宋太平, 侯晨霞, 史旺林. Vaidya-Bonner黑洞的熵. 物理学报, 2002, 51(6): 1398-1402. doi: 10.7498/aps.51.1398
    [20] 魏志勇, 段利敏, 吴和宇, 靳根明, 李祖玉, 诸永泰, 郗洪飞, 沈文庆, 肖志刚, 王宏伟, 张保国, 柳永英, 王素芳, 胡荣江. 35MeV/u40Ar+197Au中的熵产生. 物理学报, 2001, 50(4): 649-654. doi: 10.7498/aps.50.649
计量
  • 文章访问数:  3866
  • PDF下载量:  136
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-26
  • 修回日期:  2023-03-21
  • 上网日期:  2023-03-28
  • 刊出日期:  2023-06-05

/

返回文章
返回