-
在溶有稀有气体的稀土盐氯化铽水溶液中进行了单泡声致发光光谱的研究. 在固定驱动超声频率、不同驱动声压下, 观察到了一系列OH自由基从第一激发态A2∑+到基态X2Π 各振动能级跃迁所产生的谱线, 包括波长307 nm处的(0, 0)跃迁谱线, 335 nm处的(0, 1)跃迁谱线以及276 nm处的(1, 0) 跃迁谱线等. 实验结果表明较高的驱动声压有利于 276 nm处谱线的产生, 而较低的驱动声压则有利于 307 与 335 nm 处谱线的产生. 通过定义线状光谱与连续谱的光强比, 定量地表征了线状光谱在总光谱中的相对强度, 并给出了驱动声压对各跃迁谱线光强比的影响.The single-bubble sonoluminescence spectra of the terbium chloride aqueous solutions dissolved with the noble gas Ar are studied in this paper. Under the condition of fixed driving ultrasonic frequency and different sound pressures, a series of line spectra is identified as emissions from the transitions of OH radical vibrational levels from the first excited state A2∑+ to the ground state X2Π, including (0, 0) transition at 307 nm, (0, 1) transition at 335 nm and (1, 0) transition at 276 nm and so on. The experimental results show that higher sound pressure is conducive to the appearance of the line spectrum at 276 nm while lower sound pressure is favorable for the appearance of the line spectra at 307 nm and 335 nm. The relative intensity of the line spectrum in the total spectrum is expressed quantificationally by defining an intensity ratio of the line spectrum to the continuous spectrum. In addition, the effects of the driving sound pressure on the intensity ratios of different line spectra are given.
[1] Walton A J, Reynolds G T 1984 Adv. Phys. 33 595
[2] Crum L A 1994 Phys. Today 47 22
[3] Gaitan D F, Crum L A, Church C C, Roy R A 1992 J. Acoust. Soc. Am. 91 3166
[4] Sehgal C, Sutherland R G, Verrall R E 1980 J. Phys. Chem. 84 388
[5] Gordeychuk T V, Didenko Y T, Pugach S P 1996 Acoust. Phys. 42 240
[6] Lepoint T, Lepoint-Mullie F, Voglet N, Labouret S, Petrier C, Avni R, Luque J 2003 Ultrason. Sonochem. 10 167
[7] Didenko Y T, Gordeychuk T V 2000 Phys. Rev. Lett. 84 5640
[8] Pflieger R, Brau H P, Nikitenko S I 2010 Chem. Eur. J. 16 11801
[9] Xu J F, Chen W Z, Xu X H, Liang Y, Huang W, Gao X X 2007 Phys. Rev. E 76 026308
[10] Xu X H, Chen W Z, Liang Y, Xu J F 2007 Chin. Sci. Bull. 52 1237 (in Chinese) [徐兴华, 陈伟中, 梁越, 徐俊峰 2007 科学通报 52 1237]
[11] German K R 1975 J. Chem. Phys. 63 5252
[12] Richardson F S 1982 Chem. Rev. 82 541
[13] Flannigan D J, Suslick K S 2005 Nature 434 52
-
[1] Walton A J, Reynolds G T 1984 Adv. Phys. 33 595
[2] Crum L A 1994 Phys. Today 47 22
[3] Gaitan D F, Crum L A, Church C C, Roy R A 1992 J. Acoust. Soc. Am. 91 3166
[4] Sehgal C, Sutherland R G, Verrall R E 1980 J. Phys. Chem. 84 388
[5] Gordeychuk T V, Didenko Y T, Pugach S P 1996 Acoust. Phys. 42 240
[6] Lepoint T, Lepoint-Mullie F, Voglet N, Labouret S, Petrier C, Avni R, Luque J 2003 Ultrason. Sonochem. 10 167
[7] Didenko Y T, Gordeychuk T V 2000 Phys. Rev. Lett. 84 5640
[8] Pflieger R, Brau H P, Nikitenko S I 2010 Chem. Eur. J. 16 11801
[9] Xu J F, Chen W Z, Xu X H, Liang Y, Huang W, Gao X X 2007 Phys. Rev. E 76 026308
[10] Xu X H, Chen W Z, Liang Y, Xu J F 2007 Chin. Sci. Bull. 52 1237 (in Chinese) [徐兴华, 陈伟中, 梁越, 徐俊峰 2007 科学通报 52 1237]
[11] German K R 1975 J. Chem. Phys. 63 5252
[12] Richardson F S 1982 Chem. Rev. 82 541
[13] Flannigan D J, Suslick K S 2005 Nature 434 52
计量
- 文章访问数: 6320
- PDF下载量: 351
- 被引次数: 0