搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种带葡萄柚空气孔的高双折射ZrF4-BaF2-LaF3-AlF3-NaF光子准晶光纤

苏伟 娄淑琴 邹辉 韩博琳

引用本文:
Citation:

一种带葡萄柚空气孔的高双折射ZrF4-BaF2-LaF3-AlF3-NaF光子准晶光纤

苏伟, 娄淑琴, 邹辉, 韩博琳

Highly birefringent ZrF4-BaF2-LaF3-AlF3-NaF photonic quasi-crystal fiber with twin grapefruits holes

Su Wei, Lou Shu-Qin, Zou Hui, Han Bo-Lin
PDF
导出引用
  • 提出了一种具有二重对称性的ZrF4-BaF2-LaF3-AlF3-NaF(ZBLAN)氟化物玻璃基的光子准晶光纤. 光纤结构是以ZBLAN氟化物玻璃为背景材料,外包层由圆形空气孔以正方形与正三角形分布组成的基本单元构成,在芯区两侧引入两个对称的葡萄柚空气孔,以增加光纤的双折射. 应用全矢量有限元法,研究了光纤的双折射和限制损耗特性与结构参数的关系. 通过优化光纤结构参数,在1800–2200 nm的波长范围内获得了具有单模传输特性的高双折射光纤,其模式双折射高达10-2,比普通保偏光纤高出两个数量级,与目前报道的采用椭圆空气孔微结构光纤获得的高双折射具有同样的量级. 但与具有椭圆空气孔微结构光纤相比,提出的光纤结构更易于制作. 研究结果为开辟2 μm波段光器件的研究做出了有益的探索.
    A novel design of highly birefringent photonic quasi-crystal fiber based on ZrF4-BaF2-LaF3-AlF3-NaF glass with twin grapefruit air holes near the core and twofold symmetry is proposed. The basic unit is composed of one square and its neighboring regular triangle. Using the finite element method, the birefringence and confinement loss are investigated simultaneously by changing the pitch of air holes and sizes of air holes. Numerical results show that the fiber maintains single mode operation in a wide wavelength range from 1.8 μm to 2.2 μm, and the birefringence is on the order of 10-2, two orders of magnitude larger than that of the conventional polarization-maintaining fibers, which is largest (around 2 μm) ever reported to our knowledge and the same order of magnitude as that obtained by fiber using elliptic air holes But this designed fiber is easy to fabricate compared with the fibers using elliptic air holes.
    • 基金项目: 国家自然科学基金(批准号:61177082,61205074)和北京市自然科学基金(批准号:4122063)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61177082, 61205074), and the Beijing Natural Science Foundation, Chnia (Grant No. 4122063).
    [1]

    Shechtman D, Blech I, Gratias D, Cahn J W 1984 Phys. Rev. Lett. 53 1951

    [2]

    Kim S, Kee C S, Lee J 2007 Opt. Express 15 13221

    [3]

    Sun X, Hu D J J 2010 IEEE Photon. Technol. Lett. 22 607

    [4]

    Kim S, Kee C S 2009 Opt. Express 17 15885

    [5]

    Sircilli F, Franco M A R, Eurocon S V A 2007 The International Conference on "Computer as a Tool", War San, September 9-12, 2007 p1263

    [6]

    SivabalanS, Raina J P 2011 IEEE Photon. Technol. Lett. 23 1139

    [7]

    Ortigosa-Blanch A, Knight J C, Wadsworth W J, Arriaga J, Mangan B J, Birks T A, Russell P S J 2000 Opt. Lett. 25 1325

    [8]

    Asiful Islam M, Shah Alam M 2012 J. Lightwave Technol. 30 3545

    [9]

    Kim S E, Kim B H, Lee C G, Lee S, Oh K, Kee C S 2012 Opt. Express 20 1385

    [10]

    Liang W B, Liu N L, Li Z H, Lu P X 2012 J. Lightwave Technol. 30 3381

    [11]

    Cao Y, Li R M, Tong Z R 2013 Acta Phys. Sin. 62 084215 (in Chinese) [曹晔, 李荣敏, 童峥嵘 2013 物理学报 62 084215]

    [12]

    Li D M, Zhou G Y, Xia C M, Wang C, Yuan J H 2014 Chin. Phys. B 23 044209

    [13]

    Wang Y T, Cai H W, Qu R H, Fang Z J, Marin E, Meunier J P 2008 Appl. Opt. 47 3543

    [14]

    Wu C, Guan B O, Wang Z, Feng X H 2010 J. Lightwave Technol. 28 1392

    [15]

    Swiderski J, Michalska M, Maze G 2013 Opt. Express 21 7851

    [16]

    Yang W Q, Zhang B, Yin K, Zhou X F, Hou J 2013 Opt. Express 21 19732

    [17]

    Qin G S, Huang S H, Feng Y, Shirakawa A, Ueda K I 2005 IEEE Photon. Technol. Lett. 17 1818

    [18]

    Ramsay J, Dupont S, Johansen M, Rish?j L, Rottwitt K, Moselund P M, Keiding S R 2013 Opt. Express 21 10764

    [19]

    Lambin-Iezzi V, Loranger S, Saad M, Kashyap R 2013 J. Non-Cryst. Solids 359 65

    [20]

    Farin G 1997 Curves and Surfaces for Computer-Aided Geometric Design (4th Ed.) (San Diego: Elsevier)

    [21]

    Gan F X 1995 J. Non-Cryst. Solids 184 9

    [22]

    Zhang L P, Gan F X, Wang P 1994 Appl. Opt. 33 50

    [23]

    Yue Y, Kai G, Wang Z, Sun T, Jin L, Lu Y, Zhang C, Liu J, Li Y, Liu Y, Yuan S, Dong X 2007 Opt. Lett. 32 469

    [24]

    Mortensen N A 2002 Opt. Express 10 341

    [25]

    Kaneshima K, Namihira Y, Zou N, Higa H, Nagata Y 2006 IEICE Trans. Electron. E89-C 830

    [26]

    Su W, Lou S Q, Zou H, Han B L 2014 Infrared Phys. Technol. 63 62s

  • [1]

    Shechtman D, Blech I, Gratias D, Cahn J W 1984 Phys. Rev. Lett. 53 1951

    [2]

    Kim S, Kee C S, Lee J 2007 Opt. Express 15 13221

    [3]

    Sun X, Hu D J J 2010 IEEE Photon. Technol. Lett. 22 607

    [4]

    Kim S, Kee C S 2009 Opt. Express 17 15885

    [5]

    Sircilli F, Franco M A R, Eurocon S V A 2007 The International Conference on "Computer as a Tool", War San, September 9-12, 2007 p1263

    [6]

    SivabalanS, Raina J P 2011 IEEE Photon. Technol. Lett. 23 1139

    [7]

    Ortigosa-Blanch A, Knight J C, Wadsworth W J, Arriaga J, Mangan B J, Birks T A, Russell P S J 2000 Opt. Lett. 25 1325

    [8]

    Asiful Islam M, Shah Alam M 2012 J. Lightwave Technol. 30 3545

    [9]

    Kim S E, Kim B H, Lee C G, Lee S, Oh K, Kee C S 2012 Opt. Express 20 1385

    [10]

    Liang W B, Liu N L, Li Z H, Lu P X 2012 J. Lightwave Technol. 30 3381

    [11]

    Cao Y, Li R M, Tong Z R 2013 Acta Phys. Sin. 62 084215 (in Chinese) [曹晔, 李荣敏, 童峥嵘 2013 物理学报 62 084215]

    [12]

    Li D M, Zhou G Y, Xia C M, Wang C, Yuan J H 2014 Chin. Phys. B 23 044209

    [13]

    Wang Y T, Cai H W, Qu R H, Fang Z J, Marin E, Meunier J P 2008 Appl. Opt. 47 3543

    [14]

    Wu C, Guan B O, Wang Z, Feng X H 2010 J. Lightwave Technol. 28 1392

    [15]

    Swiderski J, Michalska M, Maze G 2013 Opt. Express 21 7851

    [16]

    Yang W Q, Zhang B, Yin K, Zhou X F, Hou J 2013 Opt. Express 21 19732

    [17]

    Qin G S, Huang S H, Feng Y, Shirakawa A, Ueda K I 2005 IEEE Photon. Technol. Lett. 17 1818

    [18]

    Ramsay J, Dupont S, Johansen M, Rish?j L, Rottwitt K, Moselund P M, Keiding S R 2013 Opt. Express 21 10764

    [19]

    Lambin-Iezzi V, Loranger S, Saad M, Kashyap R 2013 J. Non-Cryst. Solids 359 65

    [20]

    Farin G 1997 Curves and Surfaces for Computer-Aided Geometric Design (4th Ed.) (San Diego: Elsevier)

    [21]

    Gan F X 1995 J. Non-Cryst. Solids 184 9

    [22]

    Zhang L P, Gan F X, Wang P 1994 Appl. Opt. 33 50

    [23]

    Yue Y, Kai G, Wang Z, Sun T, Jin L, Lu Y, Zhang C, Liu J, Li Y, Liu Y, Yuan S, Dong X 2007 Opt. Lett. 32 469

    [24]

    Mortensen N A 2002 Opt. Express 10 341

    [25]

    Kaneshima K, Namihira Y, Zou N, Higa H, Nagata Y 2006 IEICE Trans. Electron. E89-C 830

    [26]

    Su W, Lou S Q, Zou H, Han B L 2014 Infrared Phys. Technol. 63 62s

  • [1] 李杰, 李蒙蒙, 孙立朋, 范鹏程, 冉洋, 金龙, 关柏鸥. 保偏微纳光纤倏逝场传感器. 物理学报, 2017, 66(7): 074209. doi: 10.7498/aps.66.074209
    [2] 熊梦杰, 李进延, 罗兴, 沈翔, 彭景刚, 李海清. 新型高双折射微结构纤芯光子晶体光纤的可调谐超连续谱的特性研究. 物理学报, 2017, 66(9): 094204. doi: 10.7498/aps.66.094204
    [3] 闫青, 贾维国, 于宇, 张俊萍, 门克内木乐. 拉曼增益对高双折射光纤中暗孤子俘获的影响. 物理学报, 2015, 64(18): 184211. doi: 10.7498/aps.64.184211
    [4] 李珊珊, 张昊, 白晋军, 刘伟伟, 常胜江. 隔行分层填充的太赫兹超高双折射多孔光纤. 物理学报, 2015, 64(15): 154201. doi: 10.7498/aps.64.154201
    [5] 王二垒, 姜海明, 谢康, 张秀霞. 一种高双折射高非线性多零色散波长光子晶体光纤. 物理学报, 2014, 63(13): 134210. doi: 10.7498/aps.63.134210
    [6] 赵原源, 周桂耀, 李建设, 韩颖, 王超, 王伟. V型高双折射光子晶体光纤超连续谱产生的实验研究. 物理学报, 2013, 62(21): 214212. doi: 10.7498/aps.62.214212
    [7] 曹晔, 李荣敏, 童峥嵘. 一种新型高双折射光子晶体光纤特性研究. 物理学报, 2013, 62(8): 084215. doi: 10.7498/aps.62.084215
    [8] 许强, 苗润才, 张亚妮. 六角点阵蜂窝状包层光子晶体光纤中的高双折射负色散效应. 物理学报, 2012, 61(23): 234210. doi: 10.7498/aps.61.234210
    [9] 付晓霞, 陈明阳. 用于太赫兹波传输的低损耗、高双折射光纤研究. 物理学报, 2011, 60(7): 074222. doi: 10.7498/aps.60.074222
    [10] 王晓琰, 李曙光, 刘硕, 张磊, 尹国冰, 冯荣普. 中红外高双折射高非线性宽带正常色散As2 S3光子晶体光纤. 物理学报, 2011, 60(6): 064213. doi: 10.7498/aps.60.064213
    [11] 白晋军, 王昌辉, 霍丙忠, 王湘晖, 常胜江. 低损宽频高双折射太赫兹光子带隙光纤. 物理学报, 2011, 60(9): 098702. doi: 10.7498/aps.60.098702
    [12] 汪静丽, 姚建铨, 陈鹤鸣, 邴丕彬, 李忠洋, 钟凯. 高双折射的混合格子太赫兹光子晶体光纤的设计与研究. 物理学报, 2011, 60(10): 104219. doi: 10.7498/aps.60.104219
    [13] 刘名扬, 孙维瑾. (Pr3+ ,Yb3+ )共掺氟化物玻璃上转换敏化发光. 物理学报, 2011, 60(7): 077804. doi: 10.7498/aps.60.077804
    [14] 夏长明, 周桂耀, 韩颖, 刘兆伦, 侯蓝田. V形高双折射光子晶体光纤特性研究. 物理学报, 2011, 60(9): 094213. doi: 10.7498/aps.60.094213
    [15] 张亚妮. 压缩六角点阵椭圆孔光子晶体光纤的低色散高双折射效应. 物理学报, 2010, 59(6): 4050-4055. doi: 10.7498/aps.59.4050
    [16] 张亚妮. 新型矩形点阵光子晶体光纤的高双折射负色散效应. 物理学报, 2010, 59(12): 8632-8639. doi: 10.7498/aps.59.8632
    [17] 张磊, 李曙光, 姚艳艳, 付博, 张美艳, 郑义. 高双折射纳米结构光子晶体光纤特性研究. 物理学报, 2010, 59(2): 1101-1107. doi: 10.7498/aps.59.1101
    [18] 付博, 李曙光, 姚艳艳, 张磊, 张美艳, 刘司英. 双芯高双折射光子晶体光纤耦合特性研究. 物理学报, 2009, 58(11): 7708-7715. doi: 10.7498/aps.58.7708
    [19] 张晓娟, 赵建林, 侯建平. 一种新型高双折射光子晶体光纤. 物理学报, 2007, 56(8): 4668-4676. doi: 10.7498/aps.56.4668
    [20] 李曙光, 邢光龙, 周桂耀, 侯蓝田. 空气孔正方形排列的低损耗高双折射光子晶体光纤的数值模拟. 物理学报, 2006, 55(1): 238-243. doi: 10.7498/aps.55.238
计量
  • 文章访问数:  5672
  • PDF下载量:  656
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-06
  • 修回日期:  2014-02-25
  • 刊出日期:  2014-07-05

/

返回文章
返回