-
通过在重掺硼硅(p+-Si)衬底上溅射SnO2薄膜并在O2气氛下800 ℃热处理形成SnO2/p+-Si异质结. 基于该异质结的器件可在低电压(电流)驱动下电致发光. 进一步地,通过在SnO2薄膜上增加TiO2盖层,使器件的电致发光获得显著增强. 这是由于TiO2盖层的引入,一方面使SnO2薄膜更加致密,减少了非辐射复合中心;另一方面TiO2较大的折射率和合适的厚度使SnO2薄膜电致发光的出光效率得到提高.
-
关键词:
- SnO2/p+-Si异质结 /
- TiO2盖层 /
- 电致发光
Low-voltage (current) driven electroluminescence (EL) has been achieved in the light-emitting device (LED) with a SnO2/p+-Si heterostructure, which is formed by sputtering SnO2 film on a p+-Si substrate, followed by annealing at 800 ℃ in O2 ambient. Furthermore, by means of capping a TiO2 film onto the SnO2 film, the modified LED exhibits significantly enhanced EL. The densification of SnO2 film as a result of the TiO2-capping is responsible for reducing the non-radiative centers. Moreover, the large refractive index and appropriate thickness of TiO2-capped layer are favorable for the extraction of emitted light from SnO2 film. Such two effects of TiO2-capping contribute to the aforementioned enhanced EL.-
Keywords:
- SnO2/p+-Si heterostructure /
- TiO2-capped /
- electroluminescence
[1] Kim D, Kim Y, Park S C, Huh J, Na J, Kim G T, Ha J S 2009 Appl. Phys. Lett. 95 043107
[2] [3] Kolmakov A, Zhang Y, Cheng G, Moskovits M 2003 Adv. Mater. 15 997
[4] [5] Snaith H J, Ducati C 2010 Nano Lett. 10 1259
[6] Wang B H, Ma J, Ji F, Yu X H, Zhang X J, Ma H L 2005 Acta phys. Sin. 54 1731 (in Chinese)[王玉恒, 马瑾, 计峰, 余旭浒, 张锡健, 马洪磊 2005 物理学报 54 1731]
[7] [8] [9] Shi S L, Liu YG, Zhang J Y, Wang T H 2009 Chin. Phys. B 18 4564
[10] Wang B, Xu P 2009 Chin. Phys. B 18 324
[11] [12] [13] Yu B L, Zhu C S, Gan F X, Huang Y B 1997 Opt. mater. 7 15
[14] [15] Agekyan V T 1977 Phys. Status Solidi A 43 11
[16] [17] Yuan Z Z, Li D S, Wang M H, Chen P L, Gong D R, Cheng P H Yang D R 2008 Appl. Phys. Lett. 92 121908
[18] [19] Yang H Y, Yu S F, Cheng C W, Tsang S H, Liang H K, Fan H J 2009 Appl. Phys. Lett. 95 201104
[20] [21] Yang H Y, Yu S F, Liang H K, Lau S P, Pramana S S, Ferraris C, Cheng C W, Fan H J 2010 ACS Appl. Mat. Interfaces. 2 1191
[22] Yang H Y, Yu S F, Lau S P, Tsang S H, Xing G Z, Wu T 2009 Appl. Phys. Lett. 94 241121
[23] [24] [25] Fujihara S, Maeda T, Ohgi H, Hosono E, Imai H, Kim S 2004 Langmuir. 20 6476
[26] [27] Kwoka M, Ottravinao L, Passacantando M, Santucci S, Czempik G, Szuber J 2005 Thin. Solid Films. 490 36
-
[1] Kim D, Kim Y, Park S C, Huh J, Na J, Kim G T, Ha J S 2009 Appl. Phys. Lett. 95 043107
[2] [3] Kolmakov A, Zhang Y, Cheng G, Moskovits M 2003 Adv. Mater. 15 997
[4] [5] Snaith H J, Ducati C 2010 Nano Lett. 10 1259
[6] Wang B H, Ma J, Ji F, Yu X H, Zhang X J, Ma H L 2005 Acta phys. Sin. 54 1731 (in Chinese)[王玉恒, 马瑾, 计峰, 余旭浒, 张锡健, 马洪磊 2005 物理学报 54 1731]
[7] [8] [9] Shi S L, Liu YG, Zhang J Y, Wang T H 2009 Chin. Phys. B 18 4564
[10] Wang B, Xu P 2009 Chin. Phys. B 18 324
[11] [12] [13] Yu B L, Zhu C S, Gan F X, Huang Y B 1997 Opt. mater. 7 15
[14] [15] Agekyan V T 1977 Phys. Status Solidi A 43 11
[16] [17] Yuan Z Z, Li D S, Wang M H, Chen P L, Gong D R, Cheng P H Yang D R 2008 Appl. Phys. Lett. 92 121908
[18] [19] Yang H Y, Yu S F, Cheng C W, Tsang S H, Liang H K, Fan H J 2009 Appl. Phys. Lett. 95 201104
[20] [21] Yang H Y, Yu S F, Liang H K, Lau S P, Pramana S S, Ferraris C, Cheng C W, Fan H J 2010 ACS Appl. Mat. Interfaces. 2 1191
[22] Yang H Y, Yu S F, Lau S P, Tsang S H, Xing G Z, Wu T 2009 Appl. Phys. Lett. 94 241121
[23] [24] [25] Fujihara S, Maeda T, Ohgi H, Hosono E, Imai H, Kim S 2004 Langmuir. 20 6476
[26] [27] Kwoka M, Ottravinao L, Passacantando M, Santucci S, Czempik G, Szuber J 2005 Thin. Solid Films. 490 36
计量
- 文章访问数: 5630
- PDF下载量: 584
- 被引次数: 0