搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

InGaAsSb四元合金材料禁带宽度的计算方法

刘超 魏志鹏 安宁 何斌太 刘鹏程 刘国军

引用本文:
Citation:

InGaAsSb四元合金材料禁带宽度的计算方法

刘超, 魏志鹏, 安宁, 何斌太, 刘鹏程, 刘国军

Calculation methods of InGaAsSb quaternary alloy band gap

Liu Chao, Wei Zhi-Peng, An Ning, He Bin-Tai, Liu Peng-Cheng, Liu Guo-Jun
PDF
导出引用
  • 讨论了计算InGaAsSb四元合金材料禁带宽度常用的Glisson方法和Moon方法, 比较了它们的计算结果. 将两者化成相同形式下的等价公式后发现, 二者都只考虑了Γ点带隙弯曲因子对禁带宽度的影响. 通过考虑自旋轨道分裂带对价带的影响, 提出一种将自旋轨道分裂带弯曲因子引入计算InGaAsSb禁带宽度的新方法. 研究结果表明, 该方法计算结果的准确性要优于两种常见的方法.
    Two popular interpolation formulas of calculating InGaAsSb quaternary alloy band gap energy are discussed, and the calculation results from them are presented and compared. It is found, after the two formulas have been converted into equivalent formulas in the same forms, that in them there is taken into consideration only the influence of bowing parameter in the Γ valley. In this paper, the effect of the spin-orbit splitting on the valence band is considered, and a new method of calculating the InGaAsSb band gap is proposed by introducing the bowing parameter of spin-orbit splitting. The results show that the introduction of the bowing parameter of spin-orbit splitting can improve the accuracy of the calculation results compared with the above two methods. When the fraction of In is less than 0.72, the calculation obtained from our method is most accurate.
    • 基金项目: 国家自然科学基金(批准号: 61076039, 61204065, 61205193, 61307045)、高等学校博士学科点专项科研基金(批准号: 20112216120005)、吉林省科技发展计划(批准号: 20121816, 201201116)和高功率半导体激光国家重点实验室基金(批准号: 9140C310101120C031115)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61076039, 61204065, 61205193, 61307045), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20112216120005), the Developing Project of Science and Technology of Jilin Province, China (Grant Nos. 20121816, 201201116), and the National Key Laboratory of High-Power Semiconductor Lasers Foundation, China (Grant No. 9140C310101120C031115).
    [1]

    Xing J L, Zhang Y, Xu Y Q, Wang G W, Wang J, Xiang W, Ni H Q, Ren Z W, He Z H, Niu Z C 2014 Chin. Phys. B 23 017805

    [2]

    Yang P L, Dai S X, Yi C S, Zhang P Q, Wang X S, Wu Y H, Xu Y S, Lin C G 2014 Acta Phys. Sin. 63 014210 (in Chinese) [杨佩龙, 戴世勋, 易昌申, 张培晴, 王训四, 吴越豪, 许银生, 林常规 2014 物理学报 63 014210]

    [3]

    Xing W X, Zhang W, Shi L C, Wang W, Zhao H, Li Z G, Huang Y D, Peng J D 2010 Acta Phys. Sin. 59 8640 (in Chinese) [邢文鑫, 张巍, 石立超, 王雯, 赵红, 李志广, 黄翊东, 彭江得 2010 物理学报 59 8640]

    [4]

    Sadao A 1987 J. Appl. Phys. 61 4869

    [5]

    Magri R, Zunger A, Kroemer H 2005 J. Appl. Phys. 98 043701

    [6]

    Vurgaftman I, Meyer J R, Ram-Mohan L R 2001 Appl. Phys. Rev. 89 5815

    [7]

    Guo X 2009 M. S. Thesis (Changchun: Jilin University) (in Chinese) [郭欣 2009 硕士学位论文 (长春: 吉林大学)]

    [8]

    Rodriguez J B, Cerutti L, Tournié E 2009 Appl. Phys. Lett. 94 023506

    [9]

    Zhang Y, Wang Y B, Xu Y Q, Xu Y, Niu Z C, Song G F 2012 J. Semicond. 33 044006

    [10]

    Barrios P, Gupta J, Lapointe J, Aers G, Storey C 2010 Rev. Cub. Fisica 27 42

    [11]

    Gupta J A, Barrios P J, Lapointe J, Aers G C, Storey C, Waldron P 2009 IEEE Photon. Technol. Lett. 21 1532

    [12]

    Williams C K, Glisson T H, Hauser J R, Littlejohn M A 1978 J. Electron. Mater. 7 639

    [13]

    Moon R L, Antypas G A, James L W 1974 J. Electron. Mater. 3 635

    [14]

    Qteish A, Needs R J 1992 Phys. Rev. B 45 1317

    [15]

    Van de Walle C G 1989 Phys. Rev. B 39 1871

    [16]

    Choi H K, Turner G W 1997 Phys. Scr. T69 17

    [17]

    Dewinter J C, Pollack M A, Srivastava A K, Zyskind J L 1985 J. Electron. Mater. 14 729

    [18]

    Xu G Y, Li A Z 2004 Acta Phys. Sin. 53 218 (in Chinese) [徐刚毅, 李爱珍 2004 物理学报 53 218]

    [19]

    Zhang Y, Wang G W, Tang B, Xu Y Q, Xu Y, Song G F 2011 J. Semicond. 32 103002

    [20]

    Shterengas L, Belenky G, Kisin M V, Donetsky D 2007 Appl. Phys. Lett. 90 011119

    [21]

    Paajaste J 2013 Ph. D. Dissertation (Tampere: Tampere University of Technology)

    [22]

    Zhang Y G, Zheng Y L, Lin C, Li A Z, Liu S 2006 Chin. Phys. Lett. 23 2262

    [23]

    Bi W G, Li A Z, Zheng Y L, Wang J X, Li C C 1992 J. Infrared Mlllim. Waves 11 415 (in Chinese) [毕文刚, 李爱珍, 郑燕兰, 王建新, 李存才 1992 红外与毫米波学报 11 415]

  • [1]

    Xing J L, Zhang Y, Xu Y Q, Wang G W, Wang J, Xiang W, Ni H Q, Ren Z W, He Z H, Niu Z C 2014 Chin. Phys. B 23 017805

    [2]

    Yang P L, Dai S X, Yi C S, Zhang P Q, Wang X S, Wu Y H, Xu Y S, Lin C G 2014 Acta Phys. Sin. 63 014210 (in Chinese) [杨佩龙, 戴世勋, 易昌申, 张培晴, 王训四, 吴越豪, 许银生, 林常规 2014 物理学报 63 014210]

    [3]

    Xing W X, Zhang W, Shi L C, Wang W, Zhao H, Li Z G, Huang Y D, Peng J D 2010 Acta Phys. Sin. 59 8640 (in Chinese) [邢文鑫, 张巍, 石立超, 王雯, 赵红, 李志广, 黄翊东, 彭江得 2010 物理学报 59 8640]

    [4]

    Sadao A 1987 J. Appl. Phys. 61 4869

    [5]

    Magri R, Zunger A, Kroemer H 2005 J. Appl. Phys. 98 043701

    [6]

    Vurgaftman I, Meyer J R, Ram-Mohan L R 2001 Appl. Phys. Rev. 89 5815

    [7]

    Guo X 2009 M. S. Thesis (Changchun: Jilin University) (in Chinese) [郭欣 2009 硕士学位论文 (长春: 吉林大学)]

    [8]

    Rodriguez J B, Cerutti L, Tournié E 2009 Appl. Phys. Lett. 94 023506

    [9]

    Zhang Y, Wang Y B, Xu Y Q, Xu Y, Niu Z C, Song G F 2012 J. Semicond. 33 044006

    [10]

    Barrios P, Gupta J, Lapointe J, Aers G, Storey C 2010 Rev. Cub. Fisica 27 42

    [11]

    Gupta J A, Barrios P J, Lapointe J, Aers G C, Storey C, Waldron P 2009 IEEE Photon. Technol. Lett. 21 1532

    [12]

    Williams C K, Glisson T H, Hauser J R, Littlejohn M A 1978 J. Electron. Mater. 7 639

    [13]

    Moon R L, Antypas G A, James L W 1974 J. Electron. Mater. 3 635

    [14]

    Qteish A, Needs R J 1992 Phys. Rev. B 45 1317

    [15]

    Van de Walle C G 1989 Phys. Rev. B 39 1871

    [16]

    Choi H K, Turner G W 1997 Phys. Scr. T69 17

    [17]

    Dewinter J C, Pollack M A, Srivastava A K, Zyskind J L 1985 J. Electron. Mater. 14 729

    [18]

    Xu G Y, Li A Z 2004 Acta Phys. Sin. 53 218 (in Chinese) [徐刚毅, 李爱珍 2004 物理学报 53 218]

    [19]

    Zhang Y, Wang G W, Tang B, Xu Y Q, Xu Y, Song G F 2011 J. Semicond. 32 103002

    [20]

    Shterengas L, Belenky G, Kisin M V, Donetsky D 2007 Appl. Phys. Lett. 90 011119

    [21]

    Paajaste J 2013 Ph. D. Dissertation (Tampere: Tampere University of Technology)

    [22]

    Zhang Y G, Zheng Y L, Lin C, Li A Z, Liu S 2006 Chin. Phys. Lett. 23 2262

    [23]

    Bi W G, Li A Z, Zheng Y L, Wang J X, Li C C 1992 J. Infrared Mlllim. Waves 11 415 (in Chinese) [毕文刚, 李爱珍, 郑燕兰, 王建新, 李存才 1992 红外与毫米波学报 11 415]

  • [1] 时凯居(Kaiju Shi), 李睿(Rui Li), 李长富, 王成新, 徐现刚, 冀子武. 荧光法测定半导体禁带宽度的探讨. 物理学报, 2022, (): . doi: 10.7498/aps.71.20211894
    [2] 郑兴娟, 任国斌, 黄琳, 郑鹤玲. 少模光纤的弯曲损耗研究. 物理学报, 2016, 65(6): 064208. doi: 10.7498/aps.65.064208
    [3] 徐朝鹏, 王永贞, 张伟, 王倩, 吴国庆. Tl掺杂对InI禁带宽度和吸收边带影响的第一性原理研究. 物理学报, 2014, 63(14): 147102. doi: 10.7498/aps.63.147102
    [4] 侯清玉, 董红英, 迎春, 马文. Mn高掺杂浓度对ZnO禁带宽度和吸收光谱影响的第一性原理研究. 物理学报, 2013, 62(3): 037101. doi: 10.7498/aps.62.037101
    [5] 濮春英, 李洪婧, 唐鑫, 张庆瑜. N掺杂Cu2O薄膜的光学性质及第一性原理分析. 物理学报, 2012, 61(4): 047104. doi: 10.7498/aps.61.047104
    [6] 江天, 程湘爱, 江厚满, 陆启生. 光伏半导体器件对能量小于禁带宽度光子的响应机理研究. 物理学报, 2011, 60(10): 107305. doi: 10.7498/aps.60.107305
    [7] 苗瑞霞, 张玉明, 汤晓燕, 张义门. 4H-SiC中基面位错发光特性研究. 物理学报, 2011, 60(3): 037808. doi: 10.7498/aps.60.037808
    [8] 潘晓娟, 贺西平. 厚圆盘弯曲振动研究. 物理学报, 2010, 59(11): 7911-7916. doi: 10.7498/aps.59.7911
    [9] 卢义刚. 碰撞因子温度系数及克分子碰撞因子. 物理学报, 2008, 57(6): 3625-3628. doi: 10.7498/aps.57.3625
    [10] 周 军, 方庆清, 王保明, 刘艳美, 李 貌, 闫方亮, 王胜男. 镁含量和热处理对Zn1-xMgxO薄膜结构和发光性能的影响. 物理学报, 2008, 57(10): 6614-6619. doi: 10.7498/aps.57.6614
    [11] 李 晖, 谢二庆, 张洪亮, 潘孝军, 张永哲. 火焰喷雾法合成ZnO和MgxZn1-xO纳米颗粒的光学性能研究. 物理学报, 2007, 56(6): 3584-3588. doi: 10.7498/aps.56.3584
    [12] 靳锡联, 娄世云, 孔德国, 李蕴才, 杜祖亮. Mg掺杂ZnO所致的禁带宽度增大现象研究. 物理学报, 2006, 55(9): 4809-4815. doi: 10.7498/aps.55.4809
    [13] 徐刚毅, 李爱珍. InGaAsSb/AlGaAsSb长波长多量子阱激光器有源区的优化设计. 物理学报, 2004, 53(1): 218-225. doi: 10.7498/aps.53.218
    [14] 舒斌, 戴显英, 张鹤鸣. pn结电容-电压法测量应变SiGe禁带宽度. 物理学报, 2004, 53(1): 235-238. doi: 10.7498/aps.53.235
    [15] 傅柔励, 帅志刚, 孙鑫. 电子相互作用对聚合物能带宽度的影响. 物理学报, 1990, 39(4): 607-613. doi: 10.7498/aps.39.607
    [16] 谭维翰, 林尊琪, 顾敏, 施阿英, 余文炎, 邓锡铭. 激光频带宽度对二次谐波时空分辨结构的影响. 物理学报, 1987, 36(5): 660-667. doi: 10.7498/aps.36.660
    [17] 吴自玉, 汪克林. 弯曲时空的半整数自旋场方程. 物理学报, 1985, 34(5): 588-593. doi: 10.7498/aps.34.588
    [18] 杜庆华. 三合板梁弯曲问题. 物理学报, 1955, 11(3): 259-286. doi: 10.7498/aps.11.259
    [19] 何善堉. 定跨度变截面梁的弯曲问题. 物理学报, 1955, 11(1): 37-54. doi: 10.7498/aps.11.37
    [20] 胡海昌. 固定边矩形板的弯曲问题. 物理学报, 1955, 11(1): 19-27. doi: 10.7498/aps.11.19
计量
  • 文章访问数:  4074
  • PDF下载量:  551
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-06
  • 修回日期:  2014-08-17
  • 刊出日期:  2014-12-05

InGaAsSb四元合金材料禁带宽度的计算方法

  • 1. 长春理工大学, 高功率半导体激光国家重点实验室, 长春 130022
    基金项目: 国家自然科学基金(批准号: 61076039, 61204065, 61205193, 61307045)、高等学校博士学科点专项科研基金(批准号: 20112216120005)、吉林省科技发展计划(批准号: 20121816, 201201116)和高功率半导体激光国家重点实验室基金(批准号: 9140C310101120C031115)资助的课题.

摘要: 讨论了计算InGaAsSb四元合金材料禁带宽度常用的Glisson方法和Moon方法, 比较了它们的计算结果. 将两者化成相同形式下的等价公式后发现, 二者都只考虑了Γ点带隙弯曲因子对禁带宽度的影响. 通过考虑自旋轨道分裂带对价带的影响, 提出一种将自旋轨道分裂带弯曲因子引入计算InGaAsSb禁带宽度的新方法. 研究结果表明, 该方法计算结果的准确性要优于两种常见的方法.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回