搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自适应加权约束最小二乘法的麦克风阵列稳健频率不变波束形成算法

郭业才 张宁 吴礼福 孙心宇

引用本文:
Citation:

基于自适应加权约束最小二乘法的麦克风阵列稳健频率不变波束形成算法

郭业才, 张宁, 吴礼福, 孙心宇

Adaptive weighted constrained least squares algorithm based microphone array robustness beamforming algorithm

Guo Ye-Cai, Zhang Ning, Wu Li-Fu, Sun Xin-Yu
PDF
导出引用
  • 为了解决麦克风阵列通道失配时波束形成算法的稳健性问题, 提出一种基于自适应加权约束最小二乘法的麦克风阵列稳健频率不变波束形成算法. 该算法在分析无通道失配和通道失配时阵列模型特点基础上, 深入研究了通道失配时约束最小二乘频率不变波束形成算法存在的问题及其产生的原因; 将麦克风特性的概率密度函数作为稳健因子加入到约束最小二乘频率不变波束形成算法后, 其频率不变性的稳健性得到了一定的提高, 但稳健性仍较差. 为了进一步提高约束最小二乘法频率不变波束形成算法的稳键性, 通过定义代价函数中控制频率不变性的动态加权系数来调节旁瓣频谱能量, 大大提高了频率不变波束形成算法的稳键性, 将频率不变的频带范围内同一到达角度上不同频率所形成的阵列响应的最大值与最小值之比定义为波动误差, 并作为比较本文算法与约束最小二乘稳健波束形成算法和minmax稳健波束形成算法在通道失配时频率不变性稳键性的评价指标. 算法实例验证结果表明, 在麦克风阵列通道失配时, 本文算法的波动误差最小、频率不变波束形成稳健性最好, 而且适用于任意结构的阵列.
    In order to solve the problem of robustness of beamforming algorithm with microphone array channel mismatch, an adaptive dynamic-weighted constrained least square algorithm-based microphone array robustness frequency invariant beamforming algorithm is proposed. In the proposed algorithm, by analyzing the microphone array model, with or without channel mismatch, the disadvantages of the constrained least square frequency invariant beamforming algorithm with channel mismatch are studied. After the probability density functions of the microphones are defined as the robustness factors and added to the constraint least square frequency invariant beamforming algorithm, the robustness is improved to a certain extent, but it is still poor. In order to further improve the robustness of the algorithm, dynamic-weighted coefficients for controlling frequency invariance in the cost function are used to regulate the sidelobe spectrum energy. The fluctuation error is defined as the ratio of the maximum to minimum value of array response formed by the same angle of arrival at different frequencies, within the frequency range of frequency invariant, to compare the proposed algorithm with the constrained least square robustness frequency invariant and minmax robustness broadband beamforming algorithm. Experimental results of the algorithms show that the fluctuation errors of the proposed algorithm are the smallest and its robustness is the best; it can effectively overcome the poor robustness of the beamforming algorithm caused by microphone array channel mismatch, and can be applied to any arbitrary array structure.
      通信作者: 郭业才, guo-yecai@163.com
    • 基金项目: 全国优秀博士论文作者专项资金(批准号: 200753)、江苏省高校自然科学基金重大项目(批准号: 13KJA510001)、高校科研成果产业化推进项目(批准号: JHB2012-9)、江苏省高校“信息与通信工程”优势学科建设工程项目、江苏省六大人才高峰项目(批准号: 2008026)和江苏省普通高校研究生科研创新计划项目(批准号: SJZZ_0110, SJZZ_0111)资助的课题.
      Corresponding author: Guo Ye-Cai, guo-yecai@163.com
    • Funds: Project supported by the Special Fund Projects of National Excellent Doctoral Dissertation of China (Grant No. 200753), the Major Project of Nature Science Foundation of Higher Education Institution of Jiangsu Province, China (Grant No. 13KJA510001), Jiangsu Scientific Research Achievements in Industrialization Project, China (Grant No. JHB2012-9), and A Project Funded by the Information and Communication Engineering Priority Academic Program Development of Jiangsu Higher Education Institutions (Grant No. 2014).
    [1]

    Benesty J, Chen J, Huang Y 2008 Microphone array signal processing (Berlin: Springer) p164-166

    [2]

    Harry L, Trees V 2002 Optimum Array Processing, part IV of Detection, Estimation, and Modulation Theory (New York: John Wiley & Sons, Inc) p76-78

    [3]

    Liu W, Weiss S 2010 Wideband Beamforming: Concepts and Techniques (Chichester: Wiley) p55-58

    [4]

    Koretz A, Rafaely B 2009 IEEE Trans. Sign. Process. 57 2417

    [5]

    Zhang X, Ser W, Zhang Z 2010 EURASIP Journal on Advances in Signal Processing 67 8306

    [6]

    Zhao Y, Liu W, Langley R 2011 IET Signal Process. 5 281

    [7]

    Zhao Y, Liu W, Langley R 2009 The 17th European Signal Processing Conference Glasgow, Scotland, 2009 p844

    [8]

    Lakshmanan S, Balasubramaniam P 2011 Chin. Phys. B 20 040204

    [9]

    Wang Y, Wu W F, Fan Z, Liang G L 2013 Acta Phys. Sin. 62 184302 (in Chinese) [王燕, 吴文峰, 范展, 梁国龙 2013 物理学报 62 184302]

    [10]

    Wang H, Chen H, Bao Y, Li L 2012 Proceedings of IEEE 10th Asia Pacific Conference on Circuits and Systerms Kaohsiung, Taiwan, China 2012 p583

    [11]

    Doclo S, Moonen M 2003 IEEE Trans. Sign. Process. 51 2511

    [12]

    Shi J, Yang D S, Shi S G 2012 Acta Phys. Sin. 61 124302 (in Chinese) [时洁, 杨德森, 时胜国 2012 物理学报 61 124302]

    [13]

    Wilcox D, Tsakalaki E, Kortun A, Ratnarajah T, Papadias C B, Sellathurai M 2013 IEEE J. Sel. Area. Comm. 31 571

    [14]

    Wang L, de Lamare R C 2010 IEEE Trans. Sign. Process. 58 5408

    [15]

    Yang D G, Li B, Wang Z T, Lian X M 2012 Acta Phys. Sin. 61 054306 (in Chinese) [杨殿阁, 李兵, 王子腾, 连小珉 2012 物理学报 61 054306]

  • [1]

    Benesty J, Chen J, Huang Y 2008 Microphone array signal processing (Berlin: Springer) p164-166

    [2]

    Harry L, Trees V 2002 Optimum Array Processing, part IV of Detection, Estimation, and Modulation Theory (New York: John Wiley & Sons, Inc) p76-78

    [3]

    Liu W, Weiss S 2010 Wideband Beamforming: Concepts and Techniques (Chichester: Wiley) p55-58

    [4]

    Koretz A, Rafaely B 2009 IEEE Trans. Sign. Process. 57 2417

    [5]

    Zhang X, Ser W, Zhang Z 2010 EURASIP Journal on Advances in Signal Processing 67 8306

    [6]

    Zhao Y, Liu W, Langley R 2011 IET Signal Process. 5 281

    [7]

    Zhao Y, Liu W, Langley R 2009 The 17th European Signal Processing Conference Glasgow, Scotland, 2009 p844

    [8]

    Lakshmanan S, Balasubramaniam P 2011 Chin. Phys. B 20 040204

    [9]

    Wang Y, Wu W F, Fan Z, Liang G L 2013 Acta Phys. Sin. 62 184302 (in Chinese) [王燕, 吴文峰, 范展, 梁国龙 2013 物理学报 62 184302]

    [10]

    Wang H, Chen H, Bao Y, Li L 2012 Proceedings of IEEE 10th Asia Pacific Conference on Circuits and Systerms Kaohsiung, Taiwan, China 2012 p583

    [11]

    Doclo S, Moonen M 2003 IEEE Trans. Sign. Process. 51 2511

    [12]

    Shi J, Yang D S, Shi S G 2012 Acta Phys. Sin. 61 124302 (in Chinese) [时洁, 杨德森, 时胜国 2012 物理学报 61 124302]

    [13]

    Wilcox D, Tsakalaki E, Kortun A, Ratnarajah T, Papadias C B, Sellathurai M 2013 IEEE J. Sel. Area. Comm. 31 571

    [14]

    Wang L, de Lamare R C 2010 IEEE Trans. Sign. Process. 58 5408

    [15]

    Yang D G, Li B, Wang Z T, Lian X M 2012 Acta Phys. Sin. 61 054306 (in Chinese) [杨殿阁, 李兵, 王子腾, 连小珉 2012 物理学报 61 054306]

  • [1] 梁可达, 刘滕飞, 常哲, 张猛, 李志鑫, 黄松松, 王晶. 基于最小二乘法和支持向量机的海洋内孤立波传播速度反演模型. 物理学报, 2023, 72(2): 028301. doi: 10.7498/aps.72.20221633
    [2] 刘欣, 蔡宸, 董志飞, 邓欣, 胡昕宇, 祁志美. 基于硅基微电子机械系统仿生振膜的光纤麦克风. 物理学报, 2022, 71(9): 094301. doi: 10.7498/aps.71.20212229
    [3] 周茂蕾, 刘东, 曲国峰, 陈桎远, 李敏, 王艺舟, 徐子虚, 韩纪锋. 基于麦克风的气体超声分子束飞行速度的实验研究. 物理学报, 2019, 68(16): 164702. doi: 10.7498/aps.68.20190436
    [4] 刘振, 孙超, 刘雄厚, 郭祺丽. 一种加权稀疏约束稳健Capon波束形成方法. 物理学报, 2016, 65(10): 104303. doi: 10.7498/aps.65.104303
    [5] 王燕, 吴文峰, 范展, 梁国龙. 一种新的稳健波束形成算法及其一维搜索策略. 物理学报, 2014, 63(15): 154303. doi: 10.7498/aps.63.154303
    [6] 黄聪, 孙大军, 张殿伦, 滕婷婷. 双基地多输入多输出虚拟阵列的稳健低旁瓣波束优化技术. 物理学报, 2014, 63(18): 188401. doi: 10.7498/aps.63.188401
    [7] 肖夏, 宋航, 王梁, 王宗杰, 路红. 早期乳腺肿瘤的超宽带微波稳健波束形成成像检测系统. 物理学报, 2014, 63(19): 194102. doi: 10.7498/aps.63.194102
    [8] 王燕, 吴文峰, 范展, 梁国龙. 基于半定规划和秩-1分解的稳健波束形成. 物理学报, 2013, 62(18): 184302. doi: 10.7498/aps.62.184302
    [9] 张旭, 姚明印, 刘木华. 激光诱导击穿光谱结合偏最小二乘法定量分析脐橙中Cd含量. 物理学报, 2013, 62(4): 044211. doi: 10.7498/aps.62.044211
    [10] 刘 畅, 刘世兴, 梅凤翔, 郭永新. 广义Hamilton系统的共形不变性与Hojman守恒量. 物理学报, 2008, 57(11): 6709-6713. doi: 10.7498/aps.57.6709
    [11] 胡楚勒, 解加芳. Maggi方程的形式不变性与 Hojman守恒量. 物理学报, 2007, 56(9): 5045-5048. doi: 10.7498/aps.56.5045
    [12] 夏丽莉, 李元成, 王 静, 后其宝. 非Chetaev型非完整可控力学系统的Noether-形式不变性. 物理学报, 2006, 55(10): 4995-4998. doi: 10.7498/aps.55.4995
    [13] 葛伟宽, 张 毅. 完整力学系统的Lie-形式不变性. 物理学报, 2005, 54(11): 4985-4988. doi: 10.7498/aps.54.4985
    [14] 楼智美. 哈密顿Ermakov系统的形式不变性. 物理学报, 2005, 54(5): 1969-1971. doi: 10.7498/aps.54.1969
    [15] 楼智美. 相空间中二阶线性非完整系统的形式不变性. 物理学报, 2004, 53(7): 2046-2049. doi: 10.7498/aps.53.2046
    [16] 张 毅. 单面完整约束力学系统的形式不变性. 物理学报, 2004, 53(2): 331-336. doi: 10.7498/aps.53.331
    [17] 葛伟宽, 张 毅. 二阶可降阶微分约束系统的形式不变性. 物理学报, 2003, 52(9): 2105-2108. doi: 10.7498/aps.52.2105
    [18] 曾绍群, 徐海峰, 李骄阳, 刘贤德. 热波成像的线性平移不变性研究. 物理学报, 1997, 46(7): 1338-1343. doi: 10.7498/aps.46.1338
    [19] 郭常霖, 黄月鸿. 无标样X射线定量分析最小二乘法方程的稳定解. 物理学报, 1993, 42(7): 1106-1111. doi: 10.7498/aps.42.1106
    [20] 王廷俊, 程虎. 104型电子计算机上的晶体结构分析标准程序系统——Ⅲ.最小二乘法修正结构参数. 物理学报, 1965, 21(2): 317-323. doi: 10.7498/aps.21.317
计量
  • 文章访问数:  5918
  • PDF下载量:  225
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-19
  • 修回日期:  2015-03-27
  • 刊出日期:  2015-09-05

/

返回文章
返回