搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

毫米级栅型电场分布FEP薄膜驻极体的制备及其电荷存储性能研究

张林成 陈钢进 肖慧明 蔡本晓 黄华 吴玲

引用本文:
Citation:

毫米级栅型电场分布FEP薄膜驻极体的制备及其电荷存储性能研究

张林成, 陈钢进, 肖慧明, 蔡本晓, 黄华, 吴玲

Preparation and charge storage property of FEP thin film electret with grid electric field distribution in millimeter scale

Zhang Lin-Cheng, Chen Gang-Jin, Xiao Hui-Ming, Cai Ben-Xiao, Huang Hua, Wu Ling
PDF
导出引用
  • 采用电晕注极和热注极技术, 在厚度为25 m的氟化乙丙烯共聚物(FEP)表面制备了宽度为2 mm和3 mm的具有栅型电场分布的驻极体, 研究了注极温度和电极宽度对其电荷存储性能的影响. 样品注极后经150天的存储, 栅型电场分布变得清晰而有规律, 覆盖铝电极区电位已衰减至接近零, 未覆盖铝电极区仍保持高电位; 对电极宽度为2 mm和3 mm的样品, 覆盖铝电极区与未覆盖铝电极区的表面电位差分别为110 V和130 V(电场强度差分别为44 kV/cm和52 kV/cm). 表面电位跟踪测试结果表明: 电晕注极样品初始表面电位高于热注极样品; 在相同的注极方法下, 注极温度越高初始表面电位越高, 电极宽度越小初始表面电位越低. 依据电晕注极和热注极原理对实验结果的分析表明, FEP和金属铝在电荷存储性能上的差异是FEP表面蒸镀铝电极后能获得栅型电场分布的原因所在.
    Electret has caught wide attention because it can produce a lasting and stable electrostatic field in the application of MEMS devices such as miniwatt electret generator, electret motor, electret sensor, electret transducer, and so on. Of all the above applications, a remarkable feature is that the electrostatic field distribution on electret surface is patterned in millimeter size or even smaller. However, the charge storage performance of electret in miniature size will dramatically get worse in contrast with the macro-electret. Therefore, it is very important to develop an applicable preparing method to maintain the stability of electrostatic field distribution in micro-patterned electret. In this paper, it is reported that a fluorinated ethylene propylene copolymer (FEP) with evaporated aluminum grid electrode a 25 m thickness topped with at a step of 2 or 3 millimeter are successfully prepared to form the electret with well grid distribution of electric field(abbreviated as grid electret) by means of corona charging and thermal charging technology. Effect of grid width and charging temperature on the charge storage performance is studied. After stored for 150 days, the grid distribution of electric field on the FEP surface becomes clear and organized. The potentials of the area covered by aluminum electrode are close to zero, while that of uncovered area still remain high. The potential differences between the covered and uncovered by aluminum electrode area are identical in different charging methods, it is 110 V (electric field 44 kV/cm) for the sample with an electrode width of 2 mm, and 130 V (electric field 52 kV/cm) for the sample with an electrode width of 3 mm. Results also show that the initial surface potentials of the grid electrets prepared by corona charging is higher than that by thermal charging, but the former decays more rapidly. For the same charging method, the narrower the aluminum electrode area can lead to the lower initial surface potential, and the higher charging temperature causes the larger initial surface potential. According to the principle of corona charging and thermal charging technology it is concluded that the difference of charge storage capability between FEP and aluminum can account for the grid distribution of electric field on the FEP surface.
      通信作者: 陈钢进, cgjin@hdu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51177032)资助的课题.
      Corresponding author: Chen Gang-Jin, cgjin@hdu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51177032).
    [1]

    Suzuki Y 2011 IEEJ T. Electr. Electr.6 100

    [2]

    Haeb A 2011 Ren. Ener. 36 2641

    [3]

    Zhang X W, Zhang X Q 2013 Acta Phys. Sin. 62 167702 (in Chinese) [张欣梧, 张晓青 2013 物理学报 62 167702]

    [4]

    Hillenbrand J, Haberzettl S, Motz T, Sessler G M 2011 J. Acoust. Soc. Am. 129 3682

    [5]

    Ko W C, Chen K W, Liou C H, Chen Y C, Wu W J, Lee C K 2012 IEEE Transactions on Dielectrics and Electrical Insulation 19 1226

    [6]

    Lo H W, Tai Y C 2008 J. Micromec. Microeng. 18 104006

    [7]

    Bakhoum E G, Cheng M H M 2011 IEEE sensors J. 11 988

    [8]

    Triches M, Wang F, Crovetto A, Lei A, You Q, Zhang X Q, Hansen O 2012 Proc. Eng. 47 770

    [9]

    Tsutsumino T, Suzuki Y, Kasagi N, Sakane Y 2006 19th IEEE International Conference on Micro Electro Mechanical SystemsIstanbul, Turkey JAN 22, 2006 p98

    [10]

    He Y, Wen Z Q, Wen Z Y, Tang B 2008 Chin. J. Sens. Acta. 21 985 (in Chinese) [何渝, 温中泉, 温志渝, 唐彬 2008 传感技术学报 21 985]

    [11]

    Xiao H M, Wen Z Q, Zhang J W, Chen G J 2007 Func. Mat.38 1297 (in Chinese) [肖慧明, 温中泉, 张锦文, 陈钢进 2007 功能材料 38 1297]

    [12]

    Genda T, Tanka S, Esashi M 2005 Jap. J. Appl. Phys. 44(7 A) 5062

    [13]

    Xia Z F 2001 Electrets (Beijing: Science Press) p302-305 (in Chinese) [夏钟福 2001 驻极体 (北京: 科学出版社)第 302–305 页]

    [14]

    Gross B, Sessler G M, West J E 1974 Appl. Phys. Lett. 24 351

    [15]

    Xu X J, Zhu D C 1996 Principle of Gas Discharge(Shanghai: Fudan University Press) p243 (in Chinese) [徐学基, 诸定昌 1996 气体放电原理 (上海: 复旦大学出版社) 第243页]

    [16]

    Chen Y S, Zhou P Y, Feng Y Q 1996 Physical effect and application (Tianjin: Tianjin University Press) p273 (in Chinese) [陈宜生, 周佩瑶, 冯艳全 1996 物理效应及其应用 (天津:天津大学出版社) 第273页]

  • [1]

    Suzuki Y 2011 IEEJ T. Electr. Electr.6 100

    [2]

    Haeb A 2011 Ren. Ener. 36 2641

    [3]

    Zhang X W, Zhang X Q 2013 Acta Phys. Sin. 62 167702 (in Chinese) [张欣梧, 张晓青 2013 物理学报 62 167702]

    [4]

    Hillenbrand J, Haberzettl S, Motz T, Sessler G M 2011 J. Acoust. Soc. Am. 129 3682

    [5]

    Ko W C, Chen K W, Liou C H, Chen Y C, Wu W J, Lee C K 2012 IEEE Transactions on Dielectrics and Electrical Insulation 19 1226

    [6]

    Lo H W, Tai Y C 2008 J. Micromec. Microeng. 18 104006

    [7]

    Bakhoum E G, Cheng M H M 2011 IEEE sensors J. 11 988

    [8]

    Triches M, Wang F, Crovetto A, Lei A, You Q, Zhang X Q, Hansen O 2012 Proc. Eng. 47 770

    [9]

    Tsutsumino T, Suzuki Y, Kasagi N, Sakane Y 2006 19th IEEE International Conference on Micro Electro Mechanical SystemsIstanbul, Turkey JAN 22, 2006 p98

    [10]

    He Y, Wen Z Q, Wen Z Y, Tang B 2008 Chin. J. Sens. Acta. 21 985 (in Chinese) [何渝, 温中泉, 温志渝, 唐彬 2008 传感技术学报 21 985]

    [11]

    Xiao H M, Wen Z Q, Zhang J W, Chen G J 2007 Func. Mat.38 1297 (in Chinese) [肖慧明, 温中泉, 张锦文, 陈钢进 2007 功能材料 38 1297]

    [12]

    Genda T, Tanka S, Esashi M 2005 Jap. J. Appl. Phys. 44(7 A) 5062

    [13]

    Xia Z F 2001 Electrets (Beijing: Science Press) p302-305 (in Chinese) [夏钟福 2001 驻极体 (北京: 科学出版社)第 302–305 页]

    [14]

    Gross B, Sessler G M, West J E 1974 Appl. Phys. Lett. 24 351

    [15]

    Xu X J, Zhu D C 1996 Principle of Gas Discharge(Shanghai: Fudan University Press) p243 (in Chinese) [徐学基, 诸定昌 1996 气体放电原理 (上海: 复旦大学出版社) 第243页]

    [16]

    Chen Y S, Zhou P Y, Feng Y Q 1996 Physical effect and application (Tianjin: Tianjin University Press) p273 (in Chinese) [陈宜生, 周佩瑶, 冯艳全 1996 物理效应及其应用 (天津:天津大学出版社) 第273页]

  • [1] 崔勇, 吴明, 宋晓, 黄玉平, 贾琦, 陶云飞, 王琛. 小型低频发射天线的研究进展. 物理学报, 2020, 69(20): 208401. doi: 10.7498/aps.69.20200792
    [2] 王琛, 崔勇, 宋晓, 袁海文. 基于驻极体材料的机械天线式低频/甚低频通信磁场传播模型. 物理学报, 2020, 69(15): 158401. doi: 10.7498/aps.69.20200314
    [3] 陈钢进, 饶成平, 肖慧明, 黄华, 赵延海. 界面极化注极聚丙烯薄膜驻极体的电荷存储特性研究. 物理学报, 2015, 64(23): 237702. doi: 10.7498/aps.64.237702
    [4] 张欣梧, 张晓青. 聚丙烯压电驻极体膜的压电和声学性能研究. 物理学报, 2013, 62(16): 167702. doi: 10.7498/aps.62.167702
    [5] 曹功勋, 张晓青, 孙转兰, 王学文, 娄可行, 夏钟福. 人工调控微结构压电驻极体的热稳定性和电荷动态特性. 物理学报, 2010, 59(9): 6514-6520. doi: 10.7498/aps.59.6514
    [6] 赵敏, 安振连, 姚俊兰, 解晨, 夏钟福. 孔洞聚丙烯驻极体膜中空间电荷与孔洞击穿电荷的俘获特性. 物理学报, 2009, 58(1): 482-487. doi: 10.7498/aps.58.482
    [7] 张晓青, 黄金峰, 王飞鹏, 夏钟福. 氟聚合物压电驻极体的压电性及其电荷的动态行为. 物理学报, 2008, 57(3): 1902-1907. doi: 10.7498/aps.57.1902
    [8] 罗海云, 王新新, 毛 婷, 梁 卓, 吕 博, 关志成, 王黎明. 用PET薄膜覆盖金属丝网电极实现大气压空气中均匀放电. 物理学报, 2008, 57(7): 4298-4303. doi: 10.7498/aps.57.4298
    [9] 王飞鹏, 夏钟福, 张晓青, 黄金峰, 沈 军. 宏观电偶极子对聚丙烯铁电驻极体膜电荷储存及其动态特性的影响. 物理学报, 2007, 56(10): 6061-6067. doi: 10.7498/aps.56.6061
    [10] 安振连, 汤敏敏, 夏钟福, 盛晓晨, 张晓青. 聚丙烯孔洞驻极体膜的化学表面处理及电荷稳定性. 物理学报, 2006, 55(2): 803-810. doi: 10.7498/aps.55.803
    [11] 王飞鹏, 夏钟福, 邱勋林, 沈 军. 聚丙烯孔洞铁电驻极体膜的电极化及其电荷动态特性. 物理学报, 2006, 55(7): 3705-3710. doi: 10.7498/aps.55.3705
    [12] 陈钢进, 肖慧明, 夏钟福. 电晕充电多孔PTFE/PP复合驻极体过滤材料的电荷存储特性. 物理学报, 2006, 55(5): 2464-2469. doi: 10.7498/aps.55.2464
    [13] 王飞鹏, 夏钟福, 裘晓敏, 吕 航, 邱勋林, 沈 军. 压力膨化处理对正极性聚丙烯蜂窝膜的驻极体性质的影响. 物理学报, 2005, 54(9): 4400-4405. doi: 10.7498/aps.54.4400
    [14] 冀忠宝, 夏钟福, 沈莉莉, 安振连. 电晕充电的聚丙烯无纺布空气过滤膜的电荷储存及稳定性. 物理学报, 2005, 54(8): 3799-3804. doi: 10.7498/aps.54.3799
    [15] 吴越华, 夏钟福, 安振连, 王飞鹏, 邱勋林. 恒流电晕充电对聚四氟乙烯多孔薄膜驻极体驻极态的影响. 物理学报, 2004, 53(9): 3146-3151. doi: 10.7498/aps.53.3146
    [16] 吴贤勇, 夏钟福, 安振连, 张鹏锋. 厚度对非极性聚合物薄膜驻极体电荷储存及电荷动态特性的影响. 物理学报, 2004, 53(12): 4325-4329. doi: 10.7498/aps.53.4325
    [17] 吴越华, 夏钟福, 王飞鹏, 邱勋林. 充电栅压对聚四氟乙烯多孔膜驻极体储电能力的影响. 物理学报, 2003, 52(12): 3186-3190. doi: 10.7498/aps.52.3186
    [18] 夏钟福, 邱勋林, 张冶文, ArminWedel, RudiDanz. 聚四氟乙烯多孔薄膜驻极体的电荷储存稳定性. 物理学报, 2002, 51(2): 389-394. doi: 10.7498/aps.51.389
    [19] 张晓青, G.M.SESSLER, 夏钟福, 张冶文. Si基Si3N4/SiO2双层膜驻极体的电荷储存与输运. 物理学报, 2001, 50(2): 293-298. doi: 10.7498/aps.50.293
    [20] 陈钢进, 夏钟福, 张冶文. 主客体掺杂型非线性光学聚合物驻极体DR1/PMMA膜中空间和偶极电荷的相互作用特性. 物理学报, 1999, 48(6): 1066-1071. doi: 10.7498/aps.48.1066
计量
  • 文章访问数:  5408
  • PDF下载量:  157
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-15
  • 修回日期:  2015-08-23
  • 刊出日期:  2015-12-05

/

返回文章
返回