搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

-衰变中容许跃迁和禁戒跃迁的衰变规律

张绍庆 谢娟 张小平 支启军

引用本文:
Citation:

-衰变中容许跃迁和禁戒跃迁的衰变规律

张绍庆, 谢娟, 张小平, 支启军

Decay law of allowed and forbidden transitions in -decay half-lives

Zhang Shao-Qing, Xie Juan, Zhang Xiao-Ping, Zhi Qi-Jun
PDF
导出引用
  • 在考虑容许跃迁和禁戒跃迁的基础上, 对远离稳定线附近原子核的-衰变寿命进行了系统的研究, 发现对于远离稳定线的原子核的-衰变寿命, 其容许跃迁和禁戒跃迁寿命(T1/2)与母核的质子数和中子数之间存在指数规律. 利用这个规律, 计算了-衰变中的容许跃迁和禁戒跃迁(包括一级禁戒跃迁和二级禁戒跃迁)的衰变寿命, 理论计算结果与实验值符合得很好. 在此基础上, 对于一些核素的-衰变寿命进行预言, 这对于核物理和天体物理中-衰变研究具有重要意义.
    -beta-decay half-lives are not only important parameters for studying the structures and decay properties of the exotic nucleus far from stability, but also basic parameters for understanding the astrophysical phenomenon. Astrophysicists need exact data of -decay half-lives as input to build nucleosynthesis models for understanding the elements abundances of our universe and solar system. For nuclei far from stability, experimental synthesis and further measurements on their half-lives are rather difficult due to the rarity and radioactivity of target material for synthesizing these nuclei. In theoretical respect, although there are many models such as finite-range droplet model plus quasi-particle random-phase approximation (QRPA), microscopic density functional theory plus QRPA, Hatree-Fock-Bogoliubov theory plus QRPA, and shell model etc., it is still a challenge to calculate -decay half-lives in a reliable way for nuclei far from the -stable line, partly because of the intrinsic complexity of nuclear multi-body problem. In empirical respect, Sargent made an empirical study of -decay half-lives in 1933 and discovered a law which is consistent with the Fermi -decay theory proposed one year later. From then on, there have been a few parametric models based on some of real physical behaviors, which describe complex quantum many-body systems, such as the Kratz-Herrmann formula and the gross theory. Recently, Zhang et al. discovered an exponential law describing -decay half-lives and the nucleon number (Z,N) of parent nuclei far from the stable line. A formula is proposed to calculate the -decay half-lives of nuclei far from stability, which can describe experimental data reasonably well. However, the differences between allowed transitions and forbidden transitions are not fully considered in this formula. Zhang et al. used a set of parameters to describe both allowed transitions and forbidden transitions. In this paper, we consider the different -decay half-lives of allowed transitions and forbidden transitions, and propose an updated parameterization of this formula. A set of parameters is obtained through fitting experimental data of different kinds of transitions with a least-square method. With these new parameters, the theoretical calculation results are in good agreement with the experimental values. The calculation accuracy is improved compared with previous version. By comparison with the complicated and time-consuming microscopic calculation, the improved exponential formula can give the results of -decay half-lives for the allowed transitions and the forbidden transitions in an effective and reliable way. According to the updated formula, we predict half-lives of --decay half-lives of some unknown nuclei far from the -stable line. These predictions are very useful references for the experimental study of --decay of nuclei far from stability and for astrophysical applications.
      通信作者: 支启军, qjzhi@gznu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11565010, 11165006, 11365006)、贵州省科技创新人才团队 (批准号: 黔科合人才团队(2015) 4015号)、贵州省普通高等学校创新团队项目资助(批准号: 黔教合人才团队字[2014]35)、贵州省优秀青年科技人才培养计划(批准号: 2011-29)、贵州省国际科技合作计划(批准号: 20117026)、贵州省科学技术厅和贵州师范大学联合科技基金项目(批准号: 黔科合J字LKS[2011]17号)、贵州省留学人员科技活动计划(批准号: 2013-03)和澳门科技发展基金(批准号: 068/2011/A, 048/2012/A2, 091/2013/A3, 020/2014/A1)资助的课题.
      Corresponding author: Zhi Qi-Jun, qjzhi@gznu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11165006, 11565010, 11365006), Guizhou Province Science and Technology Innovation Talent Team, China (Grant No. (2015) 4015), the Innovation Team Foundation of the Education Department of Guizhou Province, China (Grant No. [2014]35), the Training Program for Excellent Young Talents in Science and Technology of Guizhou Province, China (Grant No. 2011-29), the International Science and Technology Cooperation Program of Guizhou Province, China (Grant No. 20117026), Science and Technology Department of Guizhou Province, and Scientific and Technological Cooperation Projects of Guizhou Normal University, China (Grant No. LKS[2011]17), the Scientific Research Program for the Returned Overseas Chinese Scholars of Guizhou Province, China (Grant No. 2013-03), and the Foundation for Development of Science and Technology of Macau, China (Grant Nos. 068/2011/A, 048/2012/A2, 091/2013/A3, 020/2014/A1).
    [1]

    Lee T D, Yang C N 1956 Phys. Rev. 104 254

    [2]

    Feimi E 1934 Z. Phys. 88 161

    [3]

    Feynman R P, Gell-Mann M 1958 Phys. Rev. 109 193

    [4]

    Sudarshan E C G, Marshak R E 1958 Phys. Rev. 109 1860

    [5]

    Mller P, Nix J R, Kratz K L 1997 At. Data Nucl. Data Tables 66 131

    [6]

    Borzov I 2006 Nucl. Phys. A 777 645

    [7]

    Engel J, Bender M, Dobaczewski J, Nazarewicz W, Surman R 1999 Phys. Rev. C 60 014302

    [8]

    Ni D D, Ren Z Z, Zhi Q J 2011 Sci. China: Phys. Mech. Astron. 55 2397

    [9]

    Zhi Q J, Caurier E, Cuenca-Garca J J, Langanke K, Martnez-Pinedo G, Sieja K 2013 Phys. Rev. C 87 025803

    [10]

    Nabi J U, Klapdor-Kleingrothaus H V 2004 At. Data Nucl. Data Tables 88 237

    [11]

    Vogel P, Zirnbauer M R 1986 Phys. Rev. Lett. 57 3148

    [12]

    Koonin S E 1991 Nature 354 468

    [13]

    Haxton W C, Johnson C 1990 Phys. Rev. Lett. 65 1325

    [14]

    Langanke K, Martnez R, Guerra E M 2005 Eur. Phys. J. A 24 193

    [15]

    Sarriguren P, lavarez-Rodrguez R, Guerra E M 2005 Eur. Phys. J. A 24 193

    [16]

    Pantis G, imkovic F, Vergados J D, Faessler A 1996 Phys. Rev. C 53 695

    [17]

    Zhi Q J, Zheng Q 2011 Acta Phys. Sin. 60 102301 (in Chinese) [支启军, 郑强 2011 物理学报 60 102301]

    [18]

    Zhang Y M, Xu F R 2008 Acta Phys. Sin. 57 4826 (in Chinese) [张玉美, 许甫荣 2008 物理学报 57 4826]

    [19]

    Kratz K-L, Herrmann G 1973 Z. Phys. 263 435

    [20]

    Pfeiffer B, Kratz K L, Mller P 2002 Prog. Nucl. Energy 41 39

    [21]

    Takahashi K, Yamada M 1969 Prog. Theor. Phys. 41 1470

    [22]

    Zhang X P, Ren Z Z 2006 Phys. Rev. C 73 014305

    [23]

    Lu X T, Jiang D X, Ye Y L 2000 Nuclear Physics (Vol. 2)(Bijing: Atomic Energy Press) pp129-146 (in Chinese) [卢希庭, 江栋兴, 叶沿林 2000 原子核物理(北 京: 原子能出版社) 第129-146页]

    [24]

    Smith C M H 1965 A Textbook of Nuclear Physics (Vol. 1)(Oxford: Pergamon) pp140-145

    [25]

    Evans R D 1955 The Atomic Nucleus (Vol. 1)(New York: McGraw-Hill) pp200-210

    [26]

    Zhang X P, Ren Z Z, Zhi Q J, Zhang Q 2007 J. Phys. G 34 2611

    [27]

    National Nuclear Data Center On-line Retrieval System 2014 Nuclear Strucre -Decay Data (New York: Brookhaven National Laboratory)

  • [1]

    Lee T D, Yang C N 1956 Phys. Rev. 104 254

    [2]

    Feimi E 1934 Z. Phys. 88 161

    [3]

    Feynman R P, Gell-Mann M 1958 Phys. Rev. 109 193

    [4]

    Sudarshan E C G, Marshak R E 1958 Phys. Rev. 109 1860

    [5]

    Mller P, Nix J R, Kratz K L 1997 At. Data Nucl. Data Tables 66 131

    [6]

    Borzov I 2006 Nucl. Phys. A 777 645

    [7]

    Engel J, Bender M, Dobaczewski J, Nazarewicz W, Surman R 1999 Phys. Rev. C 60 014302

    [8]

    Ni D D, Ren Z Z, Zhi Q J 2011 Sci. China: Phys. Mech. Astron. 55 2397

    [9]

    Zhi Q J, Caurier E, Cuenca-Garca J J, Langanke K, Martnez-Pinedo G, Sieja K 2013 Phys. Rev. C 87 025803

    [10]

    Nabi J U, Klapdor-Kleingrothaus H V 2004 At. Data Nucl. Data Tables 88 237

    [11]

    Vogel P, Zirnbauer M R 1986 Phys. Rev. Lett. 57 3148

    [12]

    Koonin S E 1991 Nature 354 468

    [13]

    Haxton W C, Johnson C 1990 Phys. Rev. Lett. 65 1325

    [14]

    Langanke K, Martnez R, Guerra E M 2005 Eur. Phys. J. A 24 193

    [15]

    Sarriguren P, lavarez-Rodrguez R, Guerra E M 2005 Eur. Phys. J. A 24 193

    [16]

    Pantis G, imkovic F, Vergados J D, Faessler A 1996 Phys. Rev. C 53 695

    [17]

    Zhi Q J, Zheng Q 2011 Acta Phys. Sin. 60 102301 (in Chinese) [支启军, 郑强 2011 物理学报 60 102301]

    [18]

    Zhang Y M, Xu F R 2008 Acta Phys. Sin. 57 4826 (in Chinese) [张玉美, 许甫荣 2008 物理学报 57 4826]

    [19]

    Kratz K-L, Herrmann G 1973 Z. Phys. 263 435

    [20]

    Pfeiffer B, Kratz K L, Mller P 2002 Prog. Nucl. Energy 41 39

    [21]

    Takahashi K, Yamada M 1969 Prog. Theor. Phys. 41 1470

    [22]

    Zhang X P, Ren Z Z 2006 Phys. Rev. C 73 014305

    [23]

    Lu X T, Jiang D X, Ye Y L 2000 Nuclear Physics (Vol. 2)(Bijing: Atomic Energy Press) pp129-146 (in Chinese) [卢希庭, 江栋兴, 叶沿林 2000 原子核物理(北 京: 原子能出版社) 第129-146页]

    [24]

    Smith C M H 1965 A Textbook of Nuclear Physics (Vol. 1)(Oxford: Pergamon) pp140-145

    [25]

    Evans R D 1955 The Atomic Nucleus (Vol. 1)(New York: McGraw-Hill) pp200-210

    [26]

    Zhang X P, Ren Z Z, Zhi Q J, Zhang Q 2007 J. Phys. G 34 2611

    [27]

    National Nuclear Data Center On-line Retrieval System 2014 Nuclear Strucre -Decay Data (New York: Brookhaven National Laboratory)

  • [1] 刘鑫, 周晓鹏, 汶伟强, 陆祺峰, 严成龙, 许帼芹, 肖君, 黄忠魁, 汪寒冰, 陈冬阳, 邵林, 袁洋, 汪书兴, 马万路, 马新文. 电子束离子阱光谱标定和Ar13+离子M1跃迁波长精密测量. 物理学报, 2022, 71(3): 033201. doi: 10.7498/aps.71.20211663
    [2] 秦文韬, 支启军, 杨友昌. 天体环境下66Fe的电子俘获几率计算. 物理学报, 2022, 71(19): 192101. doi: 10.7498/aps.71.20220929
    [3] 李婷, 卢晓同, 周驰华, 尹默娟, 王叶兵, 常宏. 利用钟跃迁谱线测量超稳光学参考腔的零温漂点. 物理学报, 2021, 70(7): 073701. doi: 10.7498/aps.70.20201721
    [4] 刘鑫, 周晓鹏, 汶伟强, 陆祺峰, 严成龙, 许帼芹, 肖君, 黄忠魁, 汪寒冰, 陈冬阳, 邵林, 袁洋, 汪书兴, 马万路(Wan-Lu MA), 马新文. 电子束离子阱光谱标定和Ar13+离子M1跃迁波长精密测量. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211663
    [5] 陈泽, 张小平, 杨洪应, 郑强, 陈娜娜, 支启军. 等待点N=82附近核素β-衰变寿命的研究. 物理学报, 2014, 63(16): 162301. doi: 10.7498/aps.63.162301
    [6] 江永红, 孙卫国, 张燚, 付佳, 樊群超, 李会东, 冯灏. 用预言振转跃迁谱线的新公式研究AuO分子电子跃迁P支的高激发态发射谱线. 物理学报, 2013, 62(21): 213301. doi: 10.7498/aps.62.213301
    [7] 付佳, 樊群超, 孙卫国, 胡石, 江永红. VN分子R线系跃迁结构的研究与分析. 物理学报, 2013, 62(23): 233301. doi: 10.7498/aps.62.233301
    [8] 樊群超, 孙卫国, 李会东, 冯灏. CO电子基态P线系跃迁谱线的理论研究. 物理学报, 2011, 60(6): 063301. doi: 10.7498/aps.60.063301
    [9] 张小安, 杨治虎, 王党朝, 梅策香, 牛超英, 王伟, 戴斌, 肖国青. 类钴氙离子入射Ni表面激发的红外光谱线和X射线谱. 物理学报, 2009, 58(10): 6920-6925. doi: 10.7498/aps.58.6920
    [10] 宋晓书, 程新路, 杨向东, 令狐荣锋. 氧化亚氮3000—0200和1001—0110跃迁带在高温下的线强度. 物理学报, 2007, 56(8): 4428-4434. doi: 10.7498/aps.56.4428
    [11] 欧阳永中, 易有根, 朱正和, 郑志坚. 类铍离子磁四极M2 2s2 1S0—2s2p3P2 (Z=10—103)禁戒跃迁. 物理学报, 2007, 56(7): 3880-3886. doi: 10.7498/aps.56.3880
    [12] 万建杰, 颉录有, 董晨钟, 蒋 军, 颜 君. 类镍等电子系列离子M1,M2,E2禁戒跃迁特性的理论研究. 物理学报, 2007, 56(1): 152-159. doi: 10.7498/aps.56.152
    [13] 李良新, 胡勇华. 可用于红外探测器的自组织量子线及其带间和子带间光学跃迁. 物理学报, 2005, 54(2): 848-856. doi: 10.7498/aps.54.848
    [14] 牟致栋, 魏琦瑛. CuⅩⅧ离子谱线波长和跃迁概率的理论计算. 物理学报, 2005, 54(6): 2614-2619. doi: 10.7498/aps.54.2614
    [15] 侯碧辉, 李 勇, 刘国庆, 张桂花, 刘凤艳, 陶世荃. 单晶LiNbO3:Mn2+的ESR谱研究. 物理学报, 2005, 54(1): 373-378. doi: 10.7498/aps.54.373
    [16] 张小安, 赵永涛, 李福利, 杨治虎, 肖国青, 詹文龙. 129Xe30+轰击Ni表面激发靶原子偶极跃迁和禁戒 (M1和E2)跃迁的特征光谱线. 物理学报, 2004, 53(10): 3341-3346. doi: 10.7498/aps.53.3341
    [17] 袁 萍, 刘欣生, 张义军, 颉录有, 董晨钟. 弛豫与关联效应对NII离子2s22p3s3P1—2s22p21D2与2s22p3s1P1—2s22p23P0,1,2自旋禁戒跃迁概率的影响. 物理学报, 2003, 52(3): 561-565. doi: 10.7498/aps.52.561
    [18] 易有根, 汪 蓉, 李向东, 王红艳, 朱正和. 高离化类铍离子2s21S0—2s2p3P1(Z=10—103)自旋禁戒光谱跃迁. 物理学报, 2000, 49(10): 1953-1958. doi: 10.7498/aps.49.1953
    [19] 杨传路, 朱正和. Ar-HCl转动跃迁光谱线压力加宽截面的理论计算. 物理学报, 1999, 48(10): 1852-1857. doi: 10.7498/aps.48.1852
    [20] 董晨钟, 周效信. 类Ne La离子的3—2跃迁及其伴线结构的理论研究. 物理学报, 1996, 45(4): 556-562. doi: 10.7498/aps.45.556
计量
  • 文章访问数:  7340
  • PDF下载量:  290
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-18
  • 修回日期:  2015-12-28
  • 刊出日期:  2016-05-05

/

返回文章
返回