搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种求解Birkhoff动力学函数和Lagrange函数的简化方法

崔金超 廖翠萃 赵喆 刘世兴

引用本文:
Citation:

一种求解Birkhoff动力学函数和Lagrange函数的简化方法

崔金超, 廖翠萃, 赵喆, 刘世兴

A simplified method of solving Birkhoffian function and Lagrangian

Cui Jin-Chao, Liao Cui-Cui, Zhao Zhe, Liu Shi-Xing
PDF
导出引用
  • 研究Birkhoff动力学函数和Lagrange函数的简化求解方法. Santilli第二方法作为Birkhoff动力学函数的经典构造方法,其计算公式中隐含的冗余项长期以来被人们所忽视. 通过具体证明消去这一冗余项,得到简化的Santilli第二方法,并由此认识到:通过求解Birkhoff动力学函数来确定Birkhoff方程等同于确定它的辛矩阵. 这种观点为Birkhoff动力学函数的求解提供了新视角. 最后,将简化方法得到的推论应用于Lagrange逆问题,得到求解Lagrange函数的简化方法.
    By using the calculus of variations, the conservative mechanical systems can be formulated by Lagrange's equations or Hamilton's equations, which are the basis of establishing, simplifying and integrating the equations of motion. Thus it is important to find the solutions of inverse problems for different dynamical systems so as to construct the most of the Lagrange's equations and Hamilton's equations. However, the Lagrangian or Hamiltonian formulation for a dynamical system, limited by the conditions of self-adjointness, is not directly universal if the physical variables remain without using Darboux transformations. Fortunately, Refs. [7, 11] show that based on the Cauchy-Kovalevsky theorem of the integrability conditions for partial differential equations and the converse of the Poincar lemma, it can be proved that there exists a direct universality of Birkhoff's equation for local Newtonian system by reducing the Newton's equations to a first-order form, which means that all local, analytic, regular, finite-dimensional, unconstrained or holonomic, conservative or non-conservative forms always admit, in a star-shaped neighborhood of a regular point of their variables, a representation in terms of first-order Birkhoff's equations in the coordinate and time variables of the experiment. The systems whose equations of motion are represented by the first-order Birkhoff's equations on a symplectic or a contact manifold spanned by the physical variables are called Birkhoffian systems. At present, one of the most important tasks of Birkhoffian mechanics is to study the method of constructing the Birkhoffian and Birkhoffian functions. However, due to the complexity of Birkhoffian system, there exist only a few of results in the literature. Among them, the most famous main methods in this problem are achieved by Santilli[Santilli R M 1983 Foundations of Theoretical Mechanics II (New York: Springer-Verlag) pp12-15]. But the redundant term in Santilli's second method which is used as the classical construction method, is always neglected. As a result, the calculation procedure is tedious and complicated, and the efficiency is not high. Therefore, it is necessary to simplify the Santilli's second method. In Section 2, we will review the first-order standard form of holonomic system in the frame of Cartesian coordinates, which is the starting point of our studying the Birkhoffian systems. In Section 3, the Birkhoff's equations and the key role of Birkhoffian dynamics functions for deriving Birkhoff's equations are introduced. In Section 4, the redundant items are eliminated by using some mathematical operation skills, and then a more simplified constructing method is put forward. In Section 5, the findings in this study are summarized. Through simplifying the Santilli's second method, we realize that the determining of the Birkhoff's equations by constructing the Birkhoffian functions is equivalent to the determining of its symplectic matrix. This view provides a new perspective for solving the problem of constructing the Birkhoffian functions. Finally, the simplified method is applied to Lagrangian inverse problem, and a simplified method of solving Lagrangian function is obtained.
      通信作者: 刘世兴, liushixing@lnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11472124,11401259)和江南大学自主科研计划(批准号:JUSRP11530)资助的课题.
      Corresponding author: Liu Shi-Xing, liushixing@lnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11472124, 11401259) and the Self-determined Research Program of Jiangnan University, China (Grant No. JUSRP11530).
    [1]

    Santilli R M 1978 Foundations of Theoretical Mechanics I (New York: Springer-Verlag) pp2-4

    [2]

    Chen B 2012 Analytic Dynamics (2nd Edition) (Beijing: Peking University Press) pp105-108 (in Chinese) [陈滨 2012 分析动力学 (第二版) (北京: 北京大学出版社) 第105-108页]

    [3]

    Mei F X, Liu D, Luo Y 1991 Advanced Analytical Mechanics (Beijing: Beijing Institute of Technology Press) pp131-132 (in Chinese) [梅凤翔, 刘端, 罗勇 1991 高等分析力学 (北京: 北京理工大学出版社) 第131-132页]

    [4]

    Santilli R M 1983 Foundations of Theoretical Mechanics II (New York: Springer-Verlag) pp12-15

    [5]

    Marsden J E, Ratiu T S 1999 Introduction to Mechanics and Symmetry (2nd Ed.) (New York: Springer-Verlag) pp4-6

    [6]

    Guo Y X, Luo S K, Mei F X 2004 Adv. Mech. 34 477 (in Chinese) [郭永新, 罗绍凯, 梅凤翔 2004 力学进展 34 477]

    [7]

    Aringazin A K 1993 Phys. Lett. B 314 333

    [8]

    Mei F X, Shi R C, Zhang Y F, Wu H B 1996 Dynamics of Birkhoffian System (Beijing: Beijing Institute of Technology Press) pp1-3 (in Chinese) [梅凤翔, 史荣昌, 张永发, 吴惠彬 1996 Birkhoff系统动力学 (北京: 北京理工大学出版社) 第1-3页]

    [9]

    Wu H B, Mei F X 2012 Chin. Phys. B 21 339

    [10]

    Guo Y X, Shang M, Luo S K 2003 Appl. Math. Mech. 24 62 (in Chinese) [郭永新, 尚玫, 罗绍凯 2003 应用数学和力学 24 62]

    [11]

    Guo Y X, Liu C, Liu S X 2010 Commun. Math. 18 21

    [12]

    Luo S K 2003 Appl. Math. Mech. 4 414 (in Chinese) [罗绍凯 2003 应用数学和力学 4 414]

    [13]

    Ionescu D 2007 J. Geom. Phys. 57 2213

    [14]

    Zhang Y 2010 Chin. Phys. B 19 80

    [15]

    Chen C W, Luo S K, Mei F X 2001 Appl. Math. Mech. 1 47 (in Chinese) [陈向炜, 罗绍凯, 梅凤翔 2001 应用数学和力学 1 47]

    [16]

    Liu S X, Guo Y X, Liu C 2008 Acta Phys. Sin. 57 1311 (in Chinese) [刘世兴, 郭永新, 刘畅 2008 物理学报 57 1311]

    [17]

    Liu C, Song D, Liu S X, Guo Y X 2013 Sci. China: Tech. Sci. 43 541 (in Chinese) [刘畅, 宋端, 刘世兴, 郭永新 2013 中国科学: 物理学 力学 天文学 43 541]

    [18]

    Kong X L, Wu H B, Mei F X 2013 Appl. Math. Comput 225 326

    [19]

    Ding H, Chen L Q, Yang S P 2012 J. Sound Vib. 331 2426

    [20]

    Ding H, Chen L Q 2010 J. Sound Vib. 329 3484

    [21]

    Mei F X 2009 Inverse Problems of Dynamics (Beijing: National Defense Industry Press) pp261-263 (in Chinese) [梅凤翔 2009 动力学逆问题 (北京: 国防工业出版社) 第261-263页]

    [22]

    Ding G T 2010 Acta Phys. Sin. 59 3643 (in Chinese) [丁光涛 2010 物理学报 59 3643]

    [23]

    Song D, Liu C, Guo Y X 2013 Appl. Math. Mech. 34 995

    [24]

    Cui J C, Zhao Z, Guo Y X 2013 Acta Phys. Sin. 62 41 (in Chinese) [崔金超, 赵喆, 郭永新 2013 物理学报 62 41]

  • [1]

    Santilli R M 1978 Foundations of Theoretical Mechanics I (New York: Springer-Verlag) pp2-4

    [2]

    Chen B 2012 Analytic Dynamics (2nd Edition) (Beijing: Peking University Press) pp105-108 (in Chinese) [陈滨 2012 分析动力学 (第二版) (北京: 北京大学出版社) 第105-108页]

    [3]

    Mei F X, Liu D, Luo Y 1991 Advanced Analytical Mechanics (Beijing: Beijing Institute of Technology Press) pp131-132 (in Chinese) [梅凤翔, 刘端, 罗勇 1991 高等分析力学 (北京: 北京理工大学出版社) 第131-132页]

    [4]

    Santilli R M 1983 Foundations of Theoretical Mechanics II (New York: Springer-Verlag) pp12-15

    [5]

    Marsden J E, Ratiu T S 1999 Introduction to Mechanics and Symmetry (2nd Ed.) (New York: Springer-Verlag) pp4-6

    [6]

    Guo Y X, Luo S K, Mei F X 2004 Adv. Mech. 34 477 (in Chinese) [郭永新, 罗绍凯, 梅凤翔 2004 力学进展 34 477]

    [7]

    Aringazin A K 1993 Phys. Lett. B 314 333

    [8]

    Mei F X, Shi R C, Zhang Y F, Wu H B 1996 Dynamics of Birkhoffian System (Beijing: Beijing Institute of Technology Press) pp1-3 (in Chinese) [梅凤翔, 史荣昌, 张永发, 吴惠彬 1996 Birkhoff系统动力学 (北京: 北京理工大学出版社) 第1-3页]

    [9]

    Wu H B, Mei F X 2012 Chin. Phys. B 21 339

    [10]

    Guo Y X, Shang M, Luo S K 2003 Appl. Math. Mech. 24 62 (in Chinese) [郭永新, 尚玫, 罗绍凯 2003 应用数学和力学 24 62]

    [11]

    Guo Y X, Liu C, Liu S X 2010 Commun. Math. 18 21

    [12]

    Luo S K 2003 Appl. Math. Mech. 4 414 (in Chinese) [罗绍凯 2003 应用数学和力学 4 414]

    [13]

    Ionescu D 2007 J. Geom. Phys. 57 2213

    [14]

    Zhang Y 2010 Chin. Phys. B 19 80

    [15]

    Chen C W, Luo S K, Mei F X 2001 Appl. Math. Mech. 1 47 (in Chinese) [陈向炜, 罗绍凯, 梅凤翔 2001 应用数学和力学 1 47]

    [16]

    Liu S X, Guo Y X, Liu C 2008 Acta Phys. Sin. 57 1311 (in Chinese) [刘世兴, 郭永新, 刘畅 2008 物理学报 57 1311]

    [17]

    Liu C, Song D, Liu S X, Guo Y X 2013 Sci. China: Tech. Sci. 43 541 (in Chinese) [刘畅, 宋端, 刘世兴, 郭永新 2013 中国科学: 物理学 力学 天文学 43 541]

    [18]

    Kong X L, Wu H B, Mei F X 2013 Appl. Math. Comput 225 326

    [19]

    Ding H, Chen L Q, Yang S P 2012 J. Sound Vib. 331 2426

    [20]

    Ding H, Chen L Q 2010 J. Sound Vib. 329 3484

    [21]

    Mei F X 2009 Inverse Problems of Dynamics (Beijing: National Defense Industry Press) pp261-263 (in Chinese) [梅凤翔 2009 动力学逆问题 (北京: 国防工业出版社) 第261-263页]

    [22]

    Ding G T 2010 Acta Phys. Sin. 59 3643 (in Chinese) [丁光涛 2010 物理学报 59 3643]

    [23]

    Song D, Liu C, Guo Y X 2013 Appl. Math. Mech. 34 995

    [24]

    Cui J C, Zhao Z, Guo Y X 2013 Acta Phys. Sin. 62 41 (in Chinese) [崔金超, 赵喆, 郭永新 2013 物理学报 62 41]

  • [1] 崔金超, 陈漫, 廖翠萃. 关于Birkhoff逆问题中Santilli方法的研究. 物理学报, 2018, 67(5): 050202. doi: 10.7498/aps.67.20172091
    [2] 崔金超, 廖翠萃, 刘世兴, 梅凤翔. Birkhoff动力学函数成为约束系统第一积分的判别方法. 物理学报, 2017, 66(4): 040201. doi: 10.7498/aps.66.040201
    [3] 陈菊, 张毅. El-Nabulsi动力学模型下Birkhoff系统Noether对称性的摄动与绝热不变量. 物理学报, 2014, 63(10): 104501. doi: 10.7498/aps.63.104501
    [4] 宋端. 构造Birkhoff动力学函数的Santilli第二方法的简化. 物理学报, 2014, 63(14): 144501. doi: 10.7498/aps.63.144501
    [5] 崔金超, 赵喆, 郭永新. 构造Birkhoff表示的广义Hojman方法. 物理学报, 2013, 62(9): 090205. doi: 10.7498/aps.62.090205
    [6] 丁光涛. 一维变系数耗散系统Lagrange函数和Hamilton函数的新构造方法. 物理学报, 2011, 60(4): 044503. doi: 10.7498/aps.60.044503
    [7] 丁光涛. 构造Birkhoff表示的Hojman方法与Birkhoff对称性. 物理学报, 2010, 59(6): 3643-3647. doi: 10.7498/aps.59.3643
    [8] 丁光涛. 规范变换对Birkhoff系统对称性的影响. 物理学报, 2009, 58(11): 7431-7435. doi: 10.7498/aps.58.7431
    [9] 张 毅. 事件空间中Birkhoff系统的参数方程及其第一积分. 物理学报, 2008, 57(5): 2649-2653. doi: 10.7498/aps.57.2649
    [10] 张 毅. 事件空间中Birkhoff系统的Noether理论. 物理学报, 2008, 57(5): 2643-2648. doi: 10.7498/aps.57.2643
    [11] 张 毅. Birkhoff系统约化的Routh方法. 物理学报, 2008, 57(9): 5374-5377. doi: 10.7498/aps.57.5374
    [12] 葛伟宽, 梅凤翔. Birkhoff系统的时间积分定理. 物理学报, 2007, 56(5): 2479-2481. doi: 10.7498/aps.56.2479
    [13] 张鹏玉, 方建会. 变质量Birkhoff系统的Lie对称性和非Noether守恒量. 物理学报, 2006, 55(8): 3813-3816. doi: 10.7498/aps.55.3813
    [14] 张 毅. Birkhoff系统的一类新型绝热不变量. 物理学报, 2006, 55(8): 3833-3837. doi: 10.7498/aps.55.3833
    [15] 郑世旺, 贾利群. Birkhoff系统的局部能量积分. 物理学报, 2006, 55(11): 5590-5593. doi: 10.7498/aps.55.5590
    [16] 楼智美. 含速率平方阻力项的一维相对论谐振子的Lagrange函数与守恒量. 物理学报, 2005, 54(4): 1457-1459. doi: 10.7498/aps.54.1457
    [17] 张 毅, 范存新, 葛伟宽. Birkhoff系统的一类新型守恒量. 物理学报, 2004, 53(11): 3644-3647. doi: 10.7498/aps.53.3644
    [18] 张 毅. Birkhoff系统的Hojman定理的几何基础. 物理学报, 2004, 53(12): 4026-4028. doi: 10.7498/aps.53.4026
    [19] 傅景礼, 陈立群, 薛纭, 罗绍凯. 相对论Birkhoff系统的平衡稳定性. 物理学报, 2002, 51(12): 2683-2689. doi: 10.7498/aps.51.2683
    [20] 傅景礼, 陈立群, 罗绍凯, 陈向炜, 王新民. 相对论Birkhoff系统动力学研究. 物理学报, 2001, 50(12): 2289-2295. doi: 10.7498/aps.50.2289
计量
  • 文章访问数:  5435
  • PDF下载量:  159
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-02
  • 修回日期:  2016-06-03
  • 刊出日期:  2016-09-05

/

返回文章
返回