搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

级联光束分离器的纠缠特性及其应用

贾芳 张魁正 胡银泉 张浩亮 胡利云 范洪义

引用本文:
Citation:

级联光束分离器的纠缠特性及其应用

贾芳, 张魁正, 胡银泉, 张浩亮, 胡利云, 范洪义

Entanglement properties of multi-cascaded beamsplitter and its applications

Jia Fang, Zhang Kui-Zheng, Hu Yin-Quan, Zhang Hao-Liang, Hu Li-Yun, Fan Hong-Yi
PDF
导出引用
  • 光束分离器是一个具有广泛应用的线性光学器件,它在非经典量子态特别是纠缠态的制备中具有重要作用.基于单个光束分离器的表象表示,本文进一步考察多个级联光束分离器的纠缠特性,特别是结合有序算符内的积分技术推导了级联光束分离器的正规乘积、紧指数表示及级联算符的表象表示.作为应用,本文利用两个级联光束分离器获得了量子力学表象及其Schmidt分解,并结合量子条件测量制备了qubit态的叠加态.本文的研究方法已被直接推广至多个光束分离器级联情况,相关研究内容为多模纠缠态、多模qubit态的制备提供了一种有效的途径,且为由光束分离器组成的线性器件系统总作用的算符正规乘积及其紧指数表示提供了一般方法.
    Beam splitter,as a kind of linear optics instruments,has many applications such as in quantum optics and quantum information,including the preparation of nonclassical quantum states and entangled state representation.In Heisenberg picture,on the one hand,the relation of input-output of beam splitter can be easily obtained.Especially for the multicascaded beam-splitters,the input-output relation can also be directly obtained by the input-output relation of single beam splitter.On the other hand,we often need to calculate the probabilities of detecting photon number in many cases,thus we need to turn into Schrdinger picture for simplifying our calculation.Based on the equivalence between both pictures,the relation between transformation matrixes connecting these two pictures is derived.That is to say, the transform matrix corresponding to the Schrdinger picture can be obtained by transposing the transform matrix in Heisenberg picture.This concise relation constructs a bridge connecting two pictures and simplifies our calculation in the Schrdinger picture rather than step by step.Using the relation between transform matrixes of both pictures and combining the technique of integration within ordered product of operator,we further consider the coordination representation,normally ordering form and exponential expression of single beam-splitter.Then we further examine the coordination representation,normally ordering form and exponential expression of two-cascaded beam-splitters.As a generalization,the method is extended to the case of multi-cascaded beam-splitters.These investigations provide an effective way to prepare multi-mode entangled states and qubit states.In addition,a general method is shown of obtaining the total operator and its normally ordering form as well as Schmidt decomposition of the linear systems consisting of beam-splitters.As applications,2-cascaded beam-splitters is used to generate a new quantum mechanics representation and prepare the qubit states with the help of conditional measurement.The Schmidt decomposition of three-mode entangled state representation can be directly obtained by the coordination representation of 2-cascaded beam-splitters,which shows the property of entanglement.In addition,based on this representation we can clearly see that when the input states of first beam splitter are two coordinate states,the output states cannot be entangled.This implies that although the coordinate states are nonclassical,the entangled state can not be prepared either.The new proposed quantum mechanics representation will be further used to investigate the optical transformations,including wavelet transformation,Fourier transform,fractional Fourier transform,et al.Therelevant discussion will be our aim in the future research.
      通信作者: 胡利云, hlyun2008@126.com
    • 基金项目: 国家自然科学基金(批准号:11664017,11464018,11264018)、江西省杰出青年人才项目(批准号:20171BCB23034)和江西省学位与研究生教育教学改革研究项目(批准号:JXYJG-2013-027)资助的课题.
      Corresponding author: Hu Li-Yun, hlyun2008@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11664017, 11264018, 11264018), the Outstanding Young Talent Program of Jiangxi Province, China (Grant No. 20171BCB23034), and the Academic Degree and Postgraduate Education Foundation of Jiangxi Province of China (Grant No. JXYJG-2013-027).
    [1]

    Fan H Y, Klauder J R 1994 Phys. Rev. A 49 704

    [2]

    Fan H Y, Chen J H 2015 Front. Phys. 10 1

    [3]

    Fan H Y, Chen J H, Zhang P F 2015 Front. Phys. 10 187

    [4]

    Jia F, Xu S, Deng C Z, Liu C J, Hu L Y 2016 Front. Phys. 11 110302

    [5]

    Fan H Y 1997 Representation and Transformation Theory in Quantum Mechanics (Shanghai: Shanghai Scientific and Technical Publishers) (in Chinese) [范洪义 1997 量子力 学表象与变换论 (上海: 上海科学技术出版社)]

    [6]

    Hu L Y, Fan H Y 2009 Opt. Commun. 282 4379

    [7]

    Jia F, Liu C J, Hu Y Q, Fan H Y 2016 Acta Phys. Sin. 65 220302 (in Chinese) [贾芳, 刘寸金, 胡银泉, 范洪义 2016 物理学报 65 220302]

    [8]

    Fan H Y, Liang X T 2001 Phys. Lett. A 291 61

    [9]

    Zheng K M, Liu S Y, Zhang H L, Liu C J, Hu L Y 2014 Front. Phys. 9 451

    [10]

    Li H R, Li F L, Yang Y 2006 Chin. Phys. B 15 2947

    [11]

    He G Q, Zhu S W, Guo H B, Zeng G H 2008 Chin. Phys. B 17 1263

    [12]

    Zhou N R, Li J F, Yu Z B, Gong L H, Farouk A 2017 Quantum Inform. Proc. 16 UNSP4

    [13]

    Gong L H, Song H C, He C S, Liu Y, Zhou N R 2014 Phys. Scripta 89 035101

    [14]

    Bartley T J, Crowley P J D, Datta A, Nunn J, Zhang L, Walmsley I 2013 Phys. Rev. A 87 022313

    [15]

    DellAnno F, de Siena S, Illuminati F 2006 Phys. Rep. 428 53

    [16]

    Liu J B, Wang J J, Xu Z 2017 Chin. Phys. B 26 014201

    [17]

    Hu L Y, Liao Z Y, Zuabiry M S 2017 Phys. Rev. A 95 012310

    [18]

    Ye W, Zhang K Z, Zhang H L, Xu X X, Hu L Y 2018 Laser Phys. Lett. 15 025204

    [19]

    Ouyang Y, Wang S, Zhang L J 2016 J. Opt. Soc. Am. B 33 1373

    [20]

    Joo J, Munro W J, Spiller T P 2011 Phys. Rev. Lett. 107 083601

    [21]

    Hu L Y, Wei C P, Huang J H, Liu C J 2014 Opt. Commun. 323 68

    [22]

    Koniorczyk M, Kurucz Z, Garis A, Janszky J 2000 Phys. Rev. A 62 013802

    [23]

    Paris M G A 2000 Phys. Rev. A 62 033813

    [24]

    Xu X X, Hu L Y, Liao Z Y 2018 J. Opt. Soc. Am. B 35 174

    [25]

    Ralph T C, White A G, Munro W J, Milburn G J 2001 Phys. Rev. A 65 012314

    [26]

    Knill E, Laflamme R, Milburn G J 2001 Nature 409 46

    [27]

    Braunstein S L, van Loock P 2005 Rev. Mod. Phys. 77 513

    [28]

    Hu L Y, Fan H Y 2009 Int. J. Mod. Phys. A 24 2689

    [29]

    Jia F, Xu X X, Liu C J, Huang J H, Hu L Y, Fan H Y 2014 Acta Phys. Sin. 63 220301 (in Chinese) [贾芳, 徐学翔, 刘寸金, 黄接辉, 胡利云, 范洪义 2014 物理学报 63 220301]

    [30]

    Skaar J, Garca Escartn J C, Landro H 2004 Am. J. Phys. 72 1385

    [31]

    Hu L Y, Fan H Y 2009 Europhys. Lett. 85 60001

    [32]

    Odemir S K, Miranowicz A, Koashi M, Imoto N 2001 Phys. Rev. A 64 063818

  • [1]

    Fan H Y, Klauder J R 1994 Phys. Rev. A 49 704

    [2]

    Fan H Y, Chen J H 2015 Front. Phys. 10 1

    [3]

    Fan H Y, Chen J H, Zhang P F 2015 Front. Phys. 10 187

    [4]

    Jia F, Xu S, Deng C Z, Liu C J, Hu L Y 2016 Front. Phys. 11 110302

    [5]

    Fan H Y 1997 Representation and Transformation Theory in Quantum Mechanics (Shanghai: Shanghai Scientific and Technical Publishers) (in Chinese) [范洪义 1997 量子力 学表象与变换论 (上海: 上海科学技术出版社)]

    [6]

    Hu L Y, Fan H Y 2009 Opt. Commun. 282 4379

    [7]

    Jia F, Liu C J, Hu Y Q, Fan H Y 2016 Acta Phys. Sin. 65 220302 (in Chinese) [贾芳, 刘寸金, 胡银泉, 范洪义 2016 物理学报 65 220302]

    [8]

    Fan H Y, Liang X T 2001 Phys. Lett. A 291 61

    [9]

    Zheng K M, Liu S Y, Zhang H L, Liu C J, Hu L Y 2014 Front. Phys. 9 451

    [10]

    Li H R, Li F L, Yang Y 2006 Chin. Phys. B 15 2947

    [11]

    He G Q, Zhu S W, Guo H B, Zeng G H 2008 Chin. Phys. B 17 1263

    [12]

    Zhou N R, Li J F, Yu Z B, Gong L H, Farouk A 2017 Quantum Inform. Proc. 16 UNSP4

    [13]

    Gong L H, Song H C, He C S, Liu Y, Zhou N R 2014 Phys. Scripta 89 035101

    [14]

    Bartley T J, Crowley P J D, Datta A, Nunn J, Zhang L, Walmsley I 2013 Phys. Rev. A 87 022313

    [15]

    DellAnno F, de Siena S, Illuminati F 2006 Phys. Rep. 428 53

    [16]

    Liu J B, Wang J J, Xu Z 2017 Chin. Phys. B 26 014201

    [17]

    Hu L Y, Liao Z Y, Zuabiry M S 2017 Phys. Rev. A 95 012310

    [18]

    Ye W, Zhang K Z, Zhang H L, Xu X X, Hu L Y 2018 Laser Phys. Lett. 15 025204

    [19]

    Ouyang Y, Wang S, Zhang L J 2016 J. Opt. Soc. Am. B 33 1373

    [20]

    Joo J, Munro W J, Spiller T P 2011 Phys. Rev. Lett. 107 083601

    [21]

    Hu L Y, Wei C P, Huang J H, Liu C J 2014 Opt. Commun. 323 68

    [22]

    Koniorczyk M, Kurucz Z, Garis A, Janszky J 2000 Phys. Rev. A 62 013802

    [23]

    Paris M G A 2000 Phys. Rev. A 62 033813

    [24]

    Xu X X, Hu L Y, Liao Z Y 2018 J. Opt. Soc. Am. B 35 174

    [25]

    Ralph T C, White A G, Munro W J, Milburn G J 2001 Phys. Rev. A 65 012314

    [26]

    Knill E, Laflamme R, Milburn G J 2001 Nature 409 46

    [27]

    Braunstein S L, van Loock P 2005 Rev. Mod. Phys. 77 513

    [28]

    Hu L Y, Fan H Y 2009 Int. J. Mod. Phys. A 24 2689

    [29]

    Jia F, Xu X X, Liu C J, Huang J H, Hu L Y, Fan H Y 2014 Acta Phys. Sin. 63 220301 (in Chinese) [贾芳, 徐学翔, 刘寸金, 黄接辉, 胡利云, 范洪义 2014 物理学报 63 220301]

    [30]

    Skaar J, Garca Escartn J C, Landro H 2004 Am. J. Phys. 72 1385

    [31]

    Hu L Y, Fan H Y 2009 Europhys. Lett. 85 60001

    [32]

    Odemir S K, Miranowicz A, Koashi M, Imoto N 2001 Phys. Rev. A 64 063818

  • [1] 王磊, 李洪奇, 徐兴磊, 徐世民, 王继锁. 利用特殊函数和类比法有序化排列正负指数幂算符. 物理学报, 2021, 70(4): 040302. doi: 10.7498/aps.70.20201652
    [2] 张科, 范承玉, 范洪义. 用不变本征算符法求晶面吸附原子的振动模. 物理学报, 2018, 67(17): 170301. doi: 10.7498/aps.67.20180469
    [3] 贾芳, 徐学翔, 刘寸金, 黄接辉, 胡利云, 范洪义. 光束分离器算符的分解特性与纠缠功能. 物理学报, 2014, 63(22): 220301. doi: 10.7498/aps.63.220301
    [4] 李学超, 杨阳, 范洪义. 光场位相算符和逆算符的Weyl编序展开. 物理学报, 2013, 62(8): 080301. doi: 10.7498/aps.62.080301
    [5] 余海军, 钟国宝, 马建国, 任刚. 量子光学态的Ridgelet变换. 物理学报, 2013, 62(14): 144203. doi: 10.7498/aps.62.144203
    [6] 余海军, 钟国宝, 马建国, 任刚. 基于纠缠态表象的复脊波变换理论. 物理学报, 2013, 62(17): 174205. doi: 10.7498/aps.62.174205
    [7] 范洪义, 李学超. 连续纠缠态表象的几种Schmidt分解、物理意义与应用. 物理学报, 2012, 61(20): 200301. doi: 10.7498/aps.61.200301
    [8] 叶骞, 陈千帆, 范洪义. 利用热纠缠态表象获得Caldeira-Leggett密度算符方程的积分形式解. 物理学报, 2012, 61(21): 210301. doi: 10.7498/aps.61.210301
    [9] 王淑静, 马善钧. 由光分束器和起偏器混合产生的三模纠缠态表象. 物理学报, 2011, 60(3): 030302. doi: 10.7498/aps.60.030302
    [10] 上官丽英, 孙洪祥, 陈秀波, 温巧燕, 朱甫臣. 三粒子纠缠W态隐形传态的正交完备基展开与算符变换. 物理学报, 2009, 58(3): 1371-1376. doi: 10.7498/aps.58.1371
    [11] 周南润, 龚黎华, 贾芳. 基于双模相干-纠缠态表象的算符恒等式构造法. 物理学报, 2009, 58(4): 2179-2183. doi: 10.7498/aps.58.2179
    [12] 李体俊. 纠缠态投影算符的积分. 物理学报, 2009, 58(6): 3665-3669. doi: 10.7498/aps.58.3665
    [13] 李体俊. 坐标算符本征矢的表示与不对称投影算符的积分. 物理学报, 2008, 57(7): 3969-3972. doi: 10.7498/aps.57.3969
    [14] 查新未. 量子隐形传送态的正交完备基展开与算符变换. 物理学报, 2007, 56(4): 1875-1880. doi: 10.7498/aps.56.1875
    [15] 邵 丹, 邵 亮, 邵常贵, H. Noda. 度量算符对Gauss编织态的本征作用及自旋几何. 物理学报, 2007, 56(3): 1271-1291. doi: 10.7498/aps.56.1271
    [16] 杨庆怡, 韦联福, 丁良恩. 玻色算符的逆算符及其相关的奇偶相干态. 物理学报, 2003, 52(6): 1390-1395. doi: 10.7498/aps.52.1390
    [17] 谭维翰, 刘娟. 能量有限系统的相位算符与相位本征态. 物理学报, 1997, 46(12): 2348-2358. doi: 10.7498/aps.46.2348
    [18] 彭石安, 郭光灿. 光子消灭算符高次幂的本征态及其性质. 物理学报, 1990, 39(1): 51-60. doi: 10.7498/aps.39.51
    [19] 刘爱琢, 裴奉奎. 自旋置换对称体系多脉冲及二维核磁共振实验的密度算符描述(Ⅱ)——多量子积算符方法. 物理学报, 1990, 39(8): 154-161. doi: 10.7498/aps.39.154-2
    [20] 孙凤久. 算符光学中的表象变换及关联方程的普适解法. 物理学报, 1989, 38(4): 653-658. doi: 10.7498/aps.38.653
计量
  • 文章访问数:  6512
  • PDF下载量:  125
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-28
  • 修回日期:  2018-04-11
  • 刊出日期:  2018-08-05

/

返回文章
返回