搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ag纳米线四聚体中的局域表面等离子体共振腔模态变化

徐超 丁继军 陈海霞 李国利

引用本文:
Citation:

Ag纳米线四聚体中的局域表面等离子体共振腔模态变化

徐超, 丁继军, 陈海霞, 李国利

Study on mode shifts of localized surface plasmon cavity in Ag nanowire tetramer

Xu Chao, Ding Ji-Jun, Chen Hai-Xia, Li Guo-Li
PDF
HTML
导出引用
  • 利用贵金属纳米线之间的相互作用可诱导局域表面等离子体共振效应, 从而增强纳米结构中电场的分布, 这在增强荧光特性和提升传感器的灵敏度等方面都有着非常重要的意义. 本文设计了几种基于贵金属Ag的四聚体纳米结构, 包括圆柱形和四棱柱形Ag四聚体结构, 并通过改变其排列方式与棱柱纳米线的旋转角度, 对其电场分布以及电场强度X分量对旋转角的依赖关系进行了理论模拟研究, 探讨了吸收谱共振峰位与模态体积变化关系的物理机制. 结果表明在Ag纳米线四聚体结构中, 圆柱形结构中的电场增强效果不明显, 棱柱形结构中的电场被大大增强, 棱柱形四聚体间隙内产生了明显的电偶极子共振模式, 极化的等离子体共振腔说明了形貌对于热点的产生起着决定性作用, 在改变四聚体纳米线的组合方式以及四棱柱的旋转角度后, 未旋转的非对称四聚体结构的局域表面等离激元共振特性最为理想, 高于对称四棱柱结构的共振强度. 因此, 我们的结果对于利用局域表面等离子共振效应增强电场强度提供了结构模型和理论参数.
    The interaction between noble metal nanowires can induce the local surface plasmonic resonance effect, thereby enhancing the distribution of electric field in the nanostructures, which is of very important significance in improving the fluorescence characteristics and enhancing the sensitivity of sensors. In this study, we design several types of tetramers based on precious metals Ag nanostructures, including cylindrical and prismatic Ag tetramers, and by changing the arrangement and the rotation angle of prism nanowires, we simulate the rotation-angle dependent electric field distribution and electric field intensity of X component , and also discuss the physical mechanism of the relationship between the resonant peak position of absorption spectrum and the change of mode volume. The results show that in the Ag nanowires tetramer structure, the electric field in the cylindrical structure is not enhanced obviously, but the electric field in the prismatic structure is greatly enhanced, and an electric dipole resonance mode is produced in the gap between tetramers. The polarization of plasma resonant cavity revels that the morphology plays a decisive role in generating the hot spots, After changing both the combination mode of tetramer nanowires and the rotation angle of the four-prism, the local surface exciton resonance of the unrotated asymmetric tetramer structure is most ideal and has resonance intensity higher than the that of symmetrical four-prism structure. Therefore, our results provide a structural model and theoretical parameters for the enhancement of electric field intensity by local surface plasmon resonance effect.
      通信作者: 丁继军, jjding@xsyu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11804273)和陕西省科技攻关计划(批准号: 2019GY-170)资助的课题.
      Corresponding author: Ding Ji-Jun, jjding@xsyu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11804273) and the Key Science and Technology Program of Shaanxi Province, China (Grant No. 2019GY-170).
    [1]

    Bachelier G, Russier A I, Benichou E, Jonin C, Del F N, Valle'e F, Brevet P F 2008 Phys. Rev. Lett. 101 19740

    [2]

    洪昕, 杜丹丹, 裘祖荣, 张国雄 2007 物理学报 56 7219Google Scholar

    Hong X, Du D D, Qiu Z R, Zhang G Q 2007 Acta Phys. Sin. 56 7219Google Scholar

    [3]

    Xia M, Zhang P, Qiao K, Bai Y, Xie Y H 2015 J. Phys. Chem. C 120 527

    [4]

    Cathcart N, Chen J I L, Kitaev V 2018 Langmuir 34 612Google Scholar

    [5]

    Bingham J M, Willets K A, Shah N C, Andrews D Q, Van Duyne R P 2009 J. Phys. Chem. C 113 16839Google Scholar

    [6]

    Sherry L J, Chang S H, Schatz G C, Duyne R P V, Wiley B J, Xia Y N 2005 Nano Lett. 5 2034Google Scholar

    [7]

    徐天宁, 李翔, 贾文旺, 隋成华, 吴惠桢 2015 物理学报 64 245201Google Scholar

    Xu T N, Li X, Jia W W, Sui C H, Wu H Z 2015 Acta Phys. Sin. 64 245201Google Scholar

    [8]

    Hou H, Chen L M, He H L, Chen L Z, Zhao Z L, Jin Y D 2015 J. Mater. Chem. B 3 5189

    [9]

    Mahmud S, Satter S S, Singh A K, Rahman M M, Mollah M Y A, Hasan Susan M A B 2019 ACS Omega 4 18061Google Scholar

    [10]

    Fernandez-Domınguez A I, Wiener A, García-Vidal F J, Maier S A, Pendry J B 2012 Phys. Rev. Lett. 108 106802Google Scholar

    [11]

    Kessentini S, Barchiesi D, D’Andrea C, Toma A, Guillot N, Fabrizio E D, Fazio B, Maragó O M, Gucciardi P G, de la Chapelle M L 2014 J. Phys. Chem. C 118 3209Google Scholar

    [12]

    Khurgin J B, Tsai W Y, Tsai D P, Sun G 2017 ACS Photonics 4 2871Google Scholar

    [13]

    Kanipe K N, Chidester P P F, Stucky G D, Meinhart C D, Moskovits M 2017 J. Phys. Chem. C 121 14269Google Scholar

    [14]

    Khoury C G, Norton S J, Vo-Dinh T 2009 ACS Nano 3 2776Google Scholar

    [15]

    Tserkezis C, Wubs M, Mortensen N A 2018 ACS Photonics 5 133Google Scholar

    [16]

    Li G L, Chen H X, Ding J J 2020 Mod. Phys. Lett. B 35 2150203

    [17]

    Deepak K S, Adrian A, Julien B, Gérard C D F, Kumar P G V, Alexandre B 2020 Phys. Rev. B 102 115414Google Scholar

    [18]

    Alexandre A, Dang Y L, Stefan A. M, Pendry J B 2011 ACS Nano 5 3293Google Scholar

    [19]

    Bai F, Li M C, Fu P F, Li R K, Gu T S, Huang R, Chen Z, Jiang B, Li Y F 2015 APL Materials 3 056101Google Scholar

    [20]

    Pinchuk A, Kreibig U 2003 New J. Phys. 5 151Google Scholar

    [21]

    Tamitake I, Yuko S Y, Yasutaka K, Jeyadevan B 2017 Phys. Rev. B 95 115441Google Scholar

    [22]

    Park S M, Lee K S, Kim J H, Yeon G J, Shin H H, Park S, Kim Z H 2020 J. Phys. Chem. Lett. 11 9313Google Scholar

    [23]

    Beverly Z P, Dmitri D T, Akira K, Ludwig B 1998 J. Phys. Chem. B 102 752Google Scholar

  • 图 1  圆柱形(a)与四棱柱(b) Ag四聚体结构中的电场及电场线分布及圆柱形(c)与四棱柱(d)等离子共振腔示意图

    Fig. 1.  Electric field and electric field lines distribution in cylinder (a) and quadrangular (b) Ag tetramer nanostructures. Schematic diagram of plasma resonant cavity in cylindrical (c) and (d) tetramer.

    图 2  圆柱形Ag纳米线四聚体与四棱柱四聚体结构中的电场X分量分布图

    Fig. 2.  Distributions of the X-component of the electric field in the cylindrical tetramer and quadrangular tetramer structures of Ag nanowires.

    图 3  (a) C3Q1, (b) C2Q2-Ⅰ, (c) C2Q2-Ⅱ 以及 (d) C1Q3Ag纳米线四聚体结构的电场分布

    Fig. 3.  Electric field distribution of (a) C3Q1, (b) C2Q2-Ⅰ, (c) C2Q2-Ⅱ and (d) C1Q3 nanowire tetramers.

    图 4  (a) C3Q1, (b) C2Q2-Ⅰ, (c) C2Q2-Ⅱ, (d) C1Q3-up, (e) C1Q3-down 与 (f) Q4单个棱柱形纳米线旋转15°的四聚体结构电场分布图

    Fig. 4.  Electric field distributions of (a) C3Q1, (b) C2Q2-Ⅰ, (c) C2Q2-tangent, (d) C1Q3-up, (e) C1Q3-down and (f) Q4 etramer structure after a single prismatic nanowire rotating 15°.

    图 5  (a)未旋转纳米线四聚体与(b)单个棱柱形纳米线旋转15°的四聚体结构间隙处电场分布图

    Fig. 5.  Electric field distributions diagram at the gap between the tetramer (a) without rotation and (b) after 15° rotation of a single prismatic nanowire.

    图 6  不同结构Ag四聚体共振吸收谱 (a) 未旋转圆柱形四聚体与棱柱形四聚体; (b) 未旋转C3Q1, C2Q2-Ⅰ, C2Q2-Ⅱ, C1Q3四聚体; (c) C3Q1, C2Q2-Ⅰ, C2Q2-Ⅱ结构中棱柱纳米线旋转15°四聚体; (d) C1Q3-up, C1Q3-down, Q4结构中棱柱纳米线旋转15°四聚体

    Fig. 6.  Resonance absorption spectra of Ag tetramers with different structures: (a) Unrotated cylindrical tetramers and prismatic tetramers; (b) unrotated C3Q1, C2Q2-Ⅰ, C2Q2-Ⅱ, C1Q3tetramer; (c) prism nanowires rotated 15° in C3Q1, C2Q2-Ⅰ, C2Q2-Ⅱ structure; (d) prism nanowires rotated 15° in C1Q3-up, C1Q3-down, Q4 structure.

  • [1]

    Bachelier G, Russier A I, Benichou E, Jonin C, Del F N, Valle'e F, Brevet P F 2008 Phys. Rev. Lett. 101 19740

    [2]

    洪昕, 杜丹丹, 裘祖荣, 张国雄 2007 物理学报 56 7219Google Scholar

    Hong X, Du D D, Qiu Z R, Zhang G Q 2007 Acta Phys. Sin. 56 7219Google Scholar

    [3]

    Xia M, Zhang P, Qiao K, Bai Y, Xie Y H 2015 J. Phys. Chem. C 120 527

    [4]

    Cathcart N, Chen J I L, Kitaev V 2018 Langmuir 34 612Google Scholar

    [5]

    Bingham J M, Willets K A, Shah N C, Andrews D Q, Van Duyne R P 2009 J. Phys. Chem. C 113 16839Google Scholar

    [6]

    Sherry L J, Chang S H, Schatz G C, Duyne R P V, Wiley B J, Xia Y N 2005 Nano Lett. 5 2034Google Scholar

    [7]

    徐天宁, 李翔, 贾文旺, 隋成华, 吴惠桢 2015 物理学报 64 245201Google Scholar

    Xu T N, Li X, Jia W W, Sui C H, Wu H Z 2015 Acta Phys. Sin. 64 245201Google Scholar

    [8]

    Hou H, Chen L M, He H L, Chen L Z, Zhao Z L, Jin Y D 2015 J. Mater. Chem. B 3 5189

    [9]

    Mahmud S, Satter S S, Singh A K, Rahman M M, Mollah M Y A, Hasan Susan M A B 2019 ACS Omega 4 18061Google Scholar

    [10]

    Fernandez-Domınguez A I, Wiener A, García-Vidal F J, Maier S A, Pendry J B 2012 Phys. Rev. Lett. 108 106802Google Scholar

    [11]

    Kessentini S, Barchiesi D, D’Andrea C, Toma A, Guillot N, Fabrizio E D, Fazio B, Maragó O M, Gucciardi P G, de la Chapelle M L 2014 J. Phys. Chem. C 118 3209Google Scholar

    [12]

    Khurgin J B, Tsai W Y, Tsai D P, Sun G 2017 ACS Photonics 4 2871Google Scholar

    [13]

    Kanipe K N, Chidester P P F, Stucky G D, Meinhart C D, Moskovits M 2017 J. Phys. Chem. C 121 14269Google Scholar

    [14]

    Khoury C G, Norton S J, Vo-Dinh T 2009 ACS Nano 3 2776Google Scholar

    [15]

    Tserkezis C, Wubs M, Mortensen N A 2018 ACS Photonics 5 133Google Scholar

    [16]

    Li G L, Chen H X, Ding J J 2020 Mod. Phys. Lett. B 35 2150203

    [17]

    Deepak K S, Adrian A, Julien B, Gérard C D F, Kumar P G V, Alexandre B 2020 Phys. Rev. B 102 115414Google Scholar

    [18]

    Alexandre A, Dang Y L, Stefan A. M, Pendry J B 2011 ACS Nano 5 3293Google Scholar

    [19]

    Bai F, Li M C, Fu P F, Li R K, Gu T S, Huang R, Chen Z, Jiang B, Li Y F 2015 APL Materials 3 056101Google Scholar

    [20]

    Pinchuk A, Kreibig U 2003 New J. Phys. 5 151Google Scholar

    [21]

    Tamitake I, Yuko S Y, Yasutaka K, Jeyadevan B 2017 Phys. Rev. B 95 115441Google Scholar

    [22]

    Park S M, Lee K S, Kim J H, Yeon G J, Shin H H, Park S, Kim Z H 2020 J. Phys. Chem. Lett. 11 9313Google Scholar

    [23]

    Beverly Z P, Dmitri D T, Akira K, Ludwig B 1998 J. Phys. Chem. B 102 752Google Scholar

  • [1] 叶高杰, 殷澄, 黎思瑜, 俞强, 王贤平, 吴坚. 金属纳米颗粒双圆环阵列的表面格点共振效应. 物理学报, 2023, 72(10): 104201. doi: 10.7498/aps.72.20230199
    [2] 熊磊. 银纳米粒子阵列中衍射诱导高品质因子的四偶极晶格等离子体共振. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211629
    [3] 苏春燕, 牟茂淋, 陈少永, 郭文平, 唐昌建. 托卡马克等离子体中共振磁扰动场放大效应对离子轨道特性的作用. 物理学报, 2021, 70(9): 095207. doi: 10.7498/aps.70.20201860
    [4] 曹玉珍, 马金英, 刘琨, 黄翔东, 江俊峰, 王涛, 薛萌, 刘铁根. 基于全相位滤波技术的光纤表面等离子体共振传感解调算法. 物理学报, 2017, 66(7): 074202. doi: 10.7498/aps.66.074202
    [5] 陆乃彦, 余雪健, 万佳伟, 翁雨燕, 郭俊宏, 刘宇. 微图案化金衬底表面等离子体共振光学特性. 物理学报, 2016, 65(20): 208102. doi: 10.7498/aps.65.208102
    [6] 李志全, 张明, 彭涛, 岳中, 顾而丹, 李文超. 基于导模共振效应提高石墨烯表面等离子体的局域特性. 物理学报, 2016, 65(10): 105201. doi: 10.7498/aps.65.105201
    [7] 廖文英, 范万德, 李海鹏, 隋佳男, 曹学伟. 准晶体结构光纤表面等离子体共振传感器特性研究. 物理学报, 2015, 64(6): 064213. doi: 10.7498/aps.64.064213
    [8] 徐天宁, 李翔, 贾文旺, 隋成华, 吴惠桢. 五边形截面的Ag纳米线局域表面等离子体共振模式. 物理学报, 2015, 64(24): 245201. doi: 10.7498/aps.64.245201
    [9] 张倩昀, 曾捷, 李继峰, 周雅斌, 张先辉, 曹海东. 基于辅助电介质层的棱镜表面等离子体共振效应研究. 物理学报, 2014, 63(3): 034207. doi: 10.7498/aps.63.034207
    [10] 冯李航, 曾捷, 梁大开, 张为公. 契形结构光纤表面等离子体共振传感器研究. 物理学报, 2013, 62(12): 124207. doi: 10.7498/aps.62.124207
    [11] 张利伟, 赵玉环, 王勤, 方恺, 李卫彬, 乔文涛. 各向异性特异材料波导中表面等离子体的共振性质. 物理学报, 2012, 61(6): 068401. doi: 10.7498/aps.61.068401
    [12] 孙中华, 王红艳, 王辉, 张志东, 张中月. 金纳米环双体尺寸和耦合效应对表面等离子体共振特性的影响. 物理学报, 2012, 61(12): 125202. doi: 10.7498/aps.61.125202
    [13] 郝鹏, 吴一辉, 张平. 纳米金表面修饰与表面等离子体共振传感器的相互作用研究. 物理学报, 2010, 59(9): 6532-6537. doi: 10.7498/aps.59.6532
    [14] 龙拥兵, 张剑, 汪国平. 基于表面等离子体激元共振的飞秒抽运探测技术研究. 物理学报, 2009, 58(11): 7722-7726. doi: 10.7498/aps.58.7722
    [15] 吴英才, 顾铮. 激励表面等离子共振的金属薄膜最佳厚度分析. 物理学报, 2008, 57(4): 2295-2299. doi: 10.7498/aps.57.2295
    [16] 周仁龙, 陈效双, 曾 勇, 张建标, 陈洪波, 王少伟, 陆 卫, 李宏建, 夏 辉, 王玲玲. 金属光子晶体平板的超强透射及其表面等离子体共振. 物理学报, 2008, 57(6): 3506-3513. doi: 10.7498/aps.57.3506
    [17] 洪小刚, 徐文东, 李小刚, 赵成强, 唐晓东. 数值模拟探针诱导表面等离子体共振耦合纳米光刻. 物理学报, 2008, 57(10): 6643-6648. doi: 10.7498/aps.57.6643
    [18] 洪 昕, 杜丹丹, 裘祖荣, 张国雄. 半壳结构金纳米膜的局域表面等离子体共振效应. 物理学报, 2007, 56(12): 7219-7223. doi: 10.7498/aps.56.7219
    [19] 徐 慧, 盛政明, 张 杰. 相对论效应对激光在等离子体中的共振吸收的影响. 物理学报, 2006, 55(10): 5354-5361. doi: 10.7498/aps.55.5354
    [20] 刘明海, 胡希伟, 邬钦崇, 俞国扬. 电子回旋共振等离子体源的数值模拟. 物理学报, 2000, 49(3): 497-501. doi: 10.7498/aps.49.497
计量
  • 文章访问数:  5556
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-01
  • 修回日期:  2021-07-26
  • 上网日期:  2021-08-17
  • 刊出日期:  2021-12-05

/

返回文章
返回