搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多原子分子简正振动频率的量化计算

徐又捷 郭迎春 王兵兵

引用本文:
Citation:

多原子分子简正振动频率的量化计算

徐又捷, 郭迎春, 王兵兵

Quantum chemical calculation of normal vibration frequencies of polyatomic molecules

Xu You-Jie, Guo Ying-Chun, Wang Bing-Bing
PDF
HTML
导出引用
  • 针对较大分子振动频率的量化计算, 提出了一个节省计算成本的方法. 含N个原子的分子的振动频率的计算通常需要计算3N维势能超曲面及其二阶导数构成的Hessian矩阵, 然后解其特征方程得到全部简正振动模式的振动频率. N越大, 计算成本越大. 本文提出, 针对那些由平衡结构和对称性就能完全确定的振动模式, 可以逐个计算其振动频率. 当仅考虑一个振动模式时, 3N维的Hessian矩阵的计算转化为一维的势能曲线的计算. 基于简谐振子近似推导单一振动模式下分子势能曲线的表达式, 接着量化计算势能曲线, 将势能曲线拟合到表达式中以获得振动频率. 相比计算3N维势能超曲面及其二阶导数的Hessian矩阵, 仅计算一维势能曲线而节省下来的计算资源可以允许选择更高级别的计算方法和采用更为完备的基组, 提高计算的精度. 本文首先以计算水分子的B2振动模式的振动频率为例, 说明了这种方法的可行性. 接着将这种方法应用到SF6分子中. 多参考组态相互作用(MRCI)方法是计算电子相关能的有效方法, 本文采用MRCI/6-311G*基组分别计算了SF6的A1g, Eg, T2g和T2u四个振动模式的振动频率, 通过与其他方法的结果以及实验结果相比较, 本文计算的四个频率的相对误差最小.
    Quantum calculation of molecular vibrational frequency is important in investigating infrared spectrum and Raman spectrum. In this work, a low computational cost method of calculating the quantum chemistry of vibrational frequencies for large molecules is proposed. Usually, the calculation of vibrational frequency of a molecule containing N atoms needs to deal with the Hessian matrix, which consists of second derivatives of the 3N-dimensional potential hypersurface, and then solve secular equations of the matrix to obtain normal vibration modes and the corresponding frequencies. Larger N implies higher computational cost. Therefore, for a limited computational hardware condition, higher-level computations for large N atomic molecule’s vibrational frequencies cannot be implemented in practice. Here we solve this problem by calculating the vibrational frequency for only one vibrational mode each time instead of calculating the Hessian matrix to obtain all vibrational frequencies. When only one vibrational mode is taken into consideration, the molecular potential hypersurface can be transformed into one-dimensional curve. Hence, we can calculate the curve with high-level computational method, then deduce the expression of one-dimensional curve by using harmonic oscillating approximation and obtain the vibrational frequency by using the expression to fit the curve. It should be noted that this method is applied to vibrational modes whose vibrational coordinates can be completely determined by equilibrium geometry and the molecular symmetry and be independent of the molecular force constants. It requires that there exists no other vibrational mode with the same symmetry but with different frequencies. The lower computational cost for a one-dimensional potential curve than that for 3N-dimensional potential hypersurface’s second derivatives permits us to use higher-level method and larger basis set for a given computational hardware condition to achieve more accurate results. In this paper we take the calculation of B2 vibrational frequency of water molecule for example to illustrate the feasibility of this method. Furthermore, we use this method to deal with the SF6 molecule. It has 7 atoms and 70 electrons, hence there exists a large amount of electronic correlation energy to be calculated. The MRCI is an effective method to calculate the correlation energy. But by now no MRCI result of SF6 vibrational frequencies has been reported. So here we use MRCI/6-311G* to calculate the potential curves of A1g, Eg, T2g and T2u vibrational modes separately, deduce their expressions, then use the expressions to fit the curves, and finally obtain the vibrational frequencies. The results are then compared with those obtained by other theoretical methods including HF, MP2, CISD, CCSD(T) and B3LYP methods through using the same 6-311G* basis set. It is shown that the relative error to experimental result of the MRCI method is the least in the results from all these methods.
      通信作者: 郭迎春, ycguo@phy.ecnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12074418, 11774411)资助的课题
      Corresponding author: Guo Ying-Chun, ycguo@phy.ecnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074418, 11774411).
    [1]

    徐光宪, 黎乐民, 王德民 2009 量子化学(中)(第二版) (北京: 科学出版社) 第342, 343页

    Xu G X, Li L M, Wang D M 2009 Quantum Chemistry (Vol. 2) (2nd Ed.) (Beijing: Science Press) pp342, 343 (in Chinese)

    [2]

    李晨曦, 郭迎春, 王兵兵 2017 物理学报 66 103101Google Scholar

    Li C X, Guo Y C, Wang B B 2017 Acta Phys. Sin. 66 103101Google Scholar

    [3]

    Johnson R D Computational Chemistry Comparison and Benchmark Data Base, https://cccbdb.nist.gov/vibs1x.asp [2021-11-10]

    [4]

    周朕蕊, 韩冬, 赵明月, 张国强 2020 电工技术学报 35 4998Google Scholar

    Zhou L R, Han D, Zhao M Y, Zhang G Q 2020 Trans. Chin. Electrotech. Soc. 35 4998Google Scholar

    [5]

    Okubo H, Beroual A 2011 IEEE Electr. Insul. Mag. 27 34Google Scholar

    [6]

    Zhang X, Yu L, Gui Y, Hu W 2016 Appl. Surf. Sci. 367 259Google Scholar

    [7]

    武瑞琪, 郭迎春, 王兵兵 2019 物理学报 68 080201Google Scholar

    Wu R Q, Guo Y C, Wang B B 2019 Acta Phys. Sin. 68 080201Google Scholar

    [8]

    Ferré A, Boguslavskiy A E, Dagan M, Blanchet V, Bruner B D, Burgy F, Camper A, Descamps D, Fabre B, Fedorov N, Gaudin J, Geoffroy G, Mikosch J, Patchkovskii S, Petit S, Ruchon T, Soifer H, Staedter D, Wilkinson I, Stolow A, Dudovich N, Mairesse Y 2015 Nat. Commun. 6 5952Google Scholar

    [9]

    Wagner N L, Wuest A, Christov I P, Popmintchev T, Zhou X, Murnane M M, Kapteyn H C 2006 Proc. Natl. Acad. Sci. U. S. A. 103 13279Google Scholar

    [10]

    Jose J, Lucchese R R 2015 Chem. Phys. 447 64Google Scholar

    [11]

    Nguyen N T, Lucchese R R, Lin C D, Le A T 2016 Phys. Rev. A 93 063419Google Scholar

    [12]

    McDowell, R S, Krohn B J, Flicker H, Vasquez M C 1986 Spectrochim. Acta, Part A 42 351Google Scholar

    [13]

    Chrysos M, Rachet F, Kremer D 2014 J. Chem. Phys. 140 124308Google Scholar

    [14]

    Faye M, Boudon V, Loëte M 2016 J. Mol. Spectrosc. 325 35Google Scholar

    [15]

    Chapados C, Birnbaum G 1988 J. Mol. Spectrosc. 132 323Google Scholar

    [16]

    Kremer D, Rachet F, Chrysos M 2013 J. Chem. Phys. 138 174308Google Scholar

    [17]

    Eisfeld W 2011 J. Chem. Phys. 134 054303Google Scholar

    [18]

    Bin T, Longfei Z, Fangyuan H, Zongchang L, Qinqin L, Chenyao L, Liping Z, Jieming Z 2018 AIP Adv. 8 015016Google Scholar

    [19]

    Watanabe N, Hirayama T, Takahashi M 2019 Phys. Rev. A 99 062708Google Scholar

    [20]

    Werner H J, Knowles P J, Knizia G, Manby F R, Schütz M 2012 Wiley Interdiscip. Rev. Comput. Mol. Sci. 2 242Google Scholar

    [21]

    Werner H J, Knowles P J, Manby F, Black J A, Doll K, Hebelmann A, Kats D, Köhn A, Korona T, Kreplin D A, Ma Q, Miller T F, Mitrushchenkov A, Peterson K A, Polyak I, Rauhut G, Sibaev M R 2020 J. Chem. Phys. 152 144107Google Scholar

    [22]

    巴音贺希格 1996 大学物理 8 12Google Scholar

    Bayanheshig 1996 College Physics 8 12Google Scholar

  • 图 1  水分子的位移坐标系示意图, 其中1为氧核, 2, 3为两个氢核

    Fig. 1.  Schematic diagram of the displacement coordinate system of water molecule. 1 represents oxygen nuclei and 2, 3 represent the two hydrogen nucleus.

    图 2  水分子B2振动模式的势能曲线图

    Fig. 2.  Potential curve of of H2O molecule for B2 vibrational mode

    图 3  SF6分子结构示意图, 其中 1为S核, 2—7为6个F核

    Fig. 3.  Schematic diagram of SF6 molecular structure. 1 represents Sulfur nuclei and 2–7 represent Fluorine nucleus.

    图 4  SF6的势能随S—F键长l的变化曲线

    Fig. 4.  Potential curve of SF6 as the function of S—F bond length l.

    图 5  SF6不同振动模式的势能曲线 (a), (b), (c)和(d)分别对应A1g, Eg, T2g和T2u振动模式

    Fig. 5.  Potential curves of different vibrational modes of SF6 molecule: (a), (b), (c) and (d) correspond to A1g, Eg, T2g and T2u vibrational modes respectively.

    图 6  不同方法下使用相同基组6-311G*计算的4种振动频率相对于实验值的相对误差

    Fig. 6.  Relative errors to the experimental values of the four vibrational frequencies obtained by different methods and same basis set 6-311G*.

    表 1  SF6的A1g, Eg, T2g和T2u振动模式

    Table 1.  A1g, Eg, T2g and T2u vibrational modes of SF6 molecule.

    位移坐标$ {\mathrm{A}}_{1\mathrm{g}} $$ {\mathrm{E}}_{\mathrm{g}} $$ {\mathrm{E}}_{\mathrm{g}} $$ {\mathrm{T}}_{2\mathrm{g}} $$ {\mathrm{T}}_{2\mathrm{g}} $$ {\mathrm{T}}_{2\mathrm{g}} $$ {\mathrm{T}}_{2\mathrm{u}} $$ {\mathrm{T}}_{2\mathrm{u}} $$ {\mathrm{T}}_{2\mathrm{u}} $
    $ {\Delta x}_{1}, \Delta {y}_{1}, \Delta {z}_{1} $$ \mathrm{0, 0}, 0 $$ \mathrm{0, 0}, 0 $$ \mathrm{0, 0}, 0 $$ \mathrm{0, 0}, 0 $$ \mathrm{0, 0}, 0 $$ \mathrm{0, 0}, 0 $$ \mathrm{0, 0}, 0 $$ \mathrm{0, 0}, 0 $$ \mathrm{0, 0}, 0 $
    $ {\Delta x}_{2}, \Delta {y}_{2}, \Delta {z}_{2} $$ r, \mathrm{0, 0} $${r}, \mathrm{0, 0}$$ -r, \mathrm{0, 0} $$ 0, r, 0 $$ \mathrm{0, 0}, r $$ \mathrm{0, 0}, 0 $$ 0, r, 0 $$ \mathrm{0, 0}, 0 $$ \mathrm{0, 0}, r $
    $ {\Delta x}_{3}, {\Delta y}_{3}, \Delta {z}_{3} $$ -r, \mathrm{0, 0} $$ -r, \mathrm{0, 0} $$ \mathrm{r}, \mathrm{0, 0} $$ 0, -r, 0 $$ \mathrm{0, 0}, -r $$ \mathrm{0, 0}, 0 $$ 0, r, 0 $$ \mathrm{0, 0}, 0 $$ \mathrm{0, 0}, r $
    $ {\Delta x}_{4}, \Delta {y}_{4}, \Delta {z}_{4} $$ 0, r, 0 $$ \mathrm{0, 0}, 0 $$ \mathrm{0, 2}r, 0 $$ r, \mathrm{0, 0} $$ \mathrm{0, 0}, 0 $$ \mathrm{0, 0}, r $$ \mathrm{0, 0}, 0 $$ r, \mathrm{0, 0} $$ \mathrm{0, 0}, -r $
    $ \Delta {x}_{5}, \Delta {y}_{5}, \Delta {z}_{5} $$0,-r, 0$$ \mathrm{0, 0}, 0 $$ 0, -2 r, 0 $$ -r, \mathrm{0, 0} $$ \mathrm{0, 0}, 0 $$ \mathrm{0, 0}, -r $$ \mathrm{0, 0}, 0 $$ r, \mathrm{0, 0} $$ \mathrm{0, 0}, -r $
    $ {\Delta x}_{6}, \Delta {y}_{6}, \Delta {z}_{6} $$ \mathrm{0, 0}, r $$ \mathrm{0, 0}, -r $$ \mathrm{0, 0}, -r $$ \mathrm{0, 0}, 0 $$ r, \mathrm{0, 0} $$ 0, r, 0 $$ 0, -r, 0 $$ -r, \mathrm{0, 0} $$ \mathrm{0, 0}, 0 $
    $ {\Delta x}_{7}, \Delta {y}_{7}, \Delta {z}_{7} $$ \mathrm{0, 0}, -r $$ \mathrm{0, 0}, r $$ \mathrm{0, 0}, r $$ \mathrm{0, 0}, 0 $$ -r, \mathrm{0, 0} $$ 0, -r, 0 $$ 0, -r, 0 $$ -r, \mathrm{0, 0} $$ \mathrm{0, 0}, 0 $
    下载: 导出CSV

    表 2  SF6的A1g, Eg, T2g和T2u振动模式的振动频率ω1, ω2, ω3ω4

    Table 2.  Vibrational frequencies ω1, ω2, ω3 and ω4 of the vibrational modes A1g, Eg, T2g and T2u of SF6

    MRCI/6-311G*HF
    /6-311G*
    MP2/6-311G*CISD/6-311G*CCSD(T)/6-311G*B3LYP/6-311g*Expt[12]
    $ {\omega }_{1}/\mathrm{c}{\mathrm{m}}^{-1} $809824726806719706787
    $ {\omega }_{2}/\mathrm{c}{\mathrm{m}}^{-1} $650697625684627611655
    $ {\omega }_{3}/\mathrm{c}{\mathrm{m}}^{-1} $542588502541500467524
    $ {\omega }_{4}/\mathrm{c}{\mathrm{m}}^{-1} $362377335364334311355
    l0/(10–10 m)1.5581.5471.5861.5571.5861.5931.565
    下载: 导出CSV
  • [1]

    徐光宪, 黎乐民, 王德民 2009 量子化学(中)(第二版) (北京: 科学出版社) 第342, 343页

    Xu G X, Li L M, Wang D M 2009 Quantum Chemistry (Vol. 2) (2nd Ed.) (Beijing: Science Press) pp342, 343 (in Chinese)

    [2]

    李晨曦, 郭迎春, 王兵兵 2017 物理学报 66 103101Google Scholar

    Li C X, Guo Y C, Wang B B 2017 Acta Phys. Sin. 66 103101Google Scholar

    [3]

    Johnson R D Computational Chemistry Comparison and Benchmark Data Base, https://cccbdb.nist.gov/vibs1x.asp [2021-11-10]

    [4]

    周朕蕊, 韩冬, 赵明月, 张国强 2020 电工技术学报 35 4998Google Scholar

    Zhou L R, Han D, Zhao M Y, Zhang G Q 2020 Trans. Chin. Electrotech. Soc. 35 4998Google Scholar

    [5]

    Okubo H, Beroual A 2011 IEEE Electr. Insul. Mag. 27 34Google Scholar

    [6]

    Zhang X, Yu L, Gui Y, Hu W 2016 Appl. Surf. Sci. 367 259Google Scholar

    [7]

    武瑞琪, 郭迎春, 王兵兵 2019 物理学报 68 080201Google Scholar

    Wu R Q, Guo Y C, Wang B B 2019 Acta Phys. Sin. 68 080201Google Scholar

    [8]

    Ferré A, Boguslavskiy A E, Dagan M, Blanchet V, Bruner B D, Burgy F, Camper A, Descamps D, Fabre B, Fedorov N, Gaudin J, Geoffroy G, Mikosch J, Patchkovskii S, Petit S, Ruchon T, Soifer H, Staedter D, Wilkinson I, Stolow A, Dudovich N, Mairesse Y 2015 Nat. Commun. 6 5952Google Scholar

    [9]

    Wagner N L, Wuest A, Christov I P, Popmintchev T, Zhou X, Murnane M M, Kapteyn H C 2006 Proc. Natl. Acad. Sci. U. S. A. 103 13279Google Scholar

    [10]

    Jose J, Lucchese R R 2015 Chem. Phys. 447 64Google Scholar

    [11]

    Nguyen N T, Lucchese R R, Lin C D, Le A T 2016 Phys. Rev. A 93 063419Google Scholar

    [12]

    McDowell, R S, Krohn B J, Flicker H, Vasquez M C 1986 Spectrochim. Acta, Part A 42 351Google Scholar

    [13]

    Chrysos M, Rachet F, Kremer D 2014 J. Chem. Phys. 140 124308Google Scholar

    [14]

    Faye M, Boudon V, Loëte M 2016 J. Mol. Spectrosc. 325 35Google Scholar

    [15]

    Chapados C, Birnbaum G 1988 J. Mol. Spectrosc. 132 323Google Scholar

    [16]

    Kremer D, Rachet F, Chrysos M 2013 J. Chem. Phys. 138 174308Google Scholar

    [17]

    Eisfeld W 2011 J. Chem. Phys. 134 054303Google Scholar

    [18]

    Bin T, Longfei Z, Fangyuan H, Zongchang L, Qinqin L, Chenyao L, Liping Z, Jieming Z 2018 AIP Adv. 8 015016Google Scholar

    [19]

    Watanabe N, Hirayama T, Takahashi M 2019 Phys. Rev. A 99 062708Google Scholar

    [20]

    Werner H J, Knowles P J, Knizia G, Manby F R, Schütz M 2012 Wiley Interdiscip. Rev. Comput. Mol. Sci. 2 242Google Scholar

    [21]

    Werner H J, Knowles P J, Manby F, Black J A, Doll K, Hebelmann A, Kats D, Köhn A, Korona T, Kreplin D A, Ma Q, Miller T F, Mitrushchenkov A, Peterson K A, Polyak I, Rauhut G, Sibaev M R 2020 J. Chem. Phys. 152 144107Google Scholar

    [22]

    巴音贺希格 1996 大学物理 8 12Google Scholar

    Bayanheshig 1996 College Physics 8 12Google Scholar

  • [1] 曹山, 黎军, 刘元琼, 王凯, 林伟, 雷海乐. 氮分子固体中配位环境对其分子振动的影响. 物理学报, 2016, 65(3): 033103. doi: 10.7498/aps.65.033103
    [2] 郝丹辉, 孔凡杰, 蒋刚. PuNO分子结构与势能函数. 物理学报, 2015, 64(15): 153103. doi: 10.7498/aps.64.153103
    [3] 熊晓玲, 魏洪源, 陈文. TiN分子基态(X2)结构和势能函数. 物理学报, 2012, 61(1): 013401. doi: 10.7498/aps.61.013401
    [4] 许永强, 彭伟成, 武华. YH,YD,YT分子基态的结构与势能函数. 物理学报, 2012, 61(4): 043105. doi: 10.7498/aps.61.043105
    [5] 肖夏杰, 韩晓琴, 刘玉芳. XF2(X=B,N)分子基态的结构与势能函数. 物理学报, 2011, 60(6): 063102. doi: 10.7498/aps.60.063102
    [6] 杜泉, 王玲, 谌晓洪, 王红艳, 高涛, 朱正和. BeH, H2和BeH2的分子结构和势能函数. 物理学报, 2009, 58(1): 178-184. doi: 10.7498/aps.58.178
    [7] 蒋利娟, 刘玉芳, 刘振中, 韩晓琴. SiX2(X=H,F)分子的结构与势能函数. 物理学报, 2009, 58(1): 201-208. doi: 10.7498/aps.58.201
    [8] 王庆美, 任廷琦, 朱吉亮. GaH(D,T)分子基态结构与势能函数. 物理学报, 2009, 58(8): 5270-5273. doi: 10.7498/aps.58.5270
    [9] 王庆美, 任廷琦, 朱吉亮. BiH(D,T)分子基态结构与势能函数. 物理学报, 2009, 58(8): 5266-5269. doi: 10.7498/aps.58.5266
    [10] 李 权, 朱正和. AuZn和AuAl分子基态与低激发态的势能函数与热力学性质. 物理学报, 2008, 57(6): 3419-3424. doi: 10.7498/aps.57.3419
    [11] 徐国亮, 吕文静, 肖小红, 张现周, 刘玉芳, 朱遵略, 孙金锋. 密度泛函方法对SiO分子基态(X 1Σ+)势能函数的研究. 物理学报, 2008, 57(12): 7577-7580. doi: 10.7498/aps.57.7577
    [12] 孔凡杰, 杜际广, 蒋 刚. PdCO分子结构与势能函数. 物理学报, 2008, 57(1): 149-154. doi: 10.7498/aps.57.149
    [13] 朱应涛, 杨传路, 王美山, 董永绵. β-Si3N4电子结构和红外和拉曼频率的第一性原理研究. 物理学报, 2008, 57(2): 1048-1053. doi: 10.7498/aps.57.1048
    [14] 徐 梅, 汪荣凯, 令狐荣锋, 杨向东. BeH,BeD,BeT分子基态(X2Σ+)的结构与势能函数. 物理学报, 2007, 56(2): 769-773. doi: 10.7498/aps.56.769
    [15] 施德恒, 孙金锋, 马 恒, 朱遵略. 7Li2分子2 3Σ+g激发态的解析势能函数、谐振频率及振动能级. 物理学报, 2007, 56(4): 2085-2091. doi: 10.7498/aps.56.2085
    [16] 李 权, 朱正和. CH, NH和OH自由基基态与低激发态分子结构与势能函数. 物理学报, 2006, 55(1): 102-106. doi: 10.7498/aps.55.102
    [17] 黄 萍, 朱正和. CrHn(n=0,+1,+2)分子及离子的势能函数. 物理学报, 2006, 55(12): 6302-6307. doi: 10.7498/aps.55.6302
    [18] 罗德礼, 蒙大桥, 朱正和. LiH,LiO和LiOH的分析势能函数与分子反应动力学. 物理学报, 2003, 52(10): 2438-2442. doi: 10.7498/aps.52.2438
    [19] 薛卫东, 王红艳, 朱正和, 张广丰, 邹乐西, 陈长安, 孙颖. CUO分子结构与势能函数. 物理学报, 2002, 51(11): 2480-2484. doi: 10.7498/aps.51.2480
    [20] 罗德礼, 孙颖, 刘晓亚, 蒋刚, 蒙大桥, 朱正和. UH和UH2分子的结构与势能函数. 物理学报, 2001, 50(10): 1896-1901. doi: 10.7498/aps.50.1896
计量
  • 文章访问数:  8003
  • PDF下载量:  201
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-15
  • 修回日期:  2021-12-14
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-05-05

/

返回文章
返回