-
Coherent population transfer in quantum systems is of fundamental importance in many fields spanning atomic and molecular collision dynamics, information processing for qubit systems. Stimulated Raman nonadiabatic passage technique, when implemented in an externally driven three-level system, provides an efficient approach for realizing accelerated population transfer while maintaining robust quantum coherence, without the rotating wave approximation. However, previous protocols employ multiple pulses and imply that Rabi frequencies have a few oscillations during dynamical evolution. In this paper, under two-photon resonance, we utilize the gauge transformation method to inversely design a Λ-configuration three-level system that can be solved exactly. By invoking a SU(3) transformation, we establish the connection between Schrödinger representation and gauge representation with which the effective Hamiltonian is an Abelian operator. Subsequently, we construct the desired Hamiltonian and further investigate its dynamic behavior. The result demonstrate that, by imposing appropriate boundary conditions on the control parameters, high-fidelity population transfer can be achieved in ideal evolution. In addition, for the practical case with pulse truncation and intermediate state decay, the fidelities of specific models can reach about 99:996% and for 99:983%. Compared to other existing nonadiabatic quantum control schemes, we show that the present scheme has the distinctive advantages. Firstly, instead of introducing an additional microwave field, we achieve the desired quantum control by applying only a few sets of Stokes and pump pulses. Moreover this approach does not exhibit Rabi oscillations in the dynamic process, nor does it present singularities in the pulse itself.
-
Keywords:
- three-level systems /
- SU(3) Lie algebra /
- without the rotating-wave approximation /
- nonadiabatic population transfer
-
[1] Goldner L S, Gerz C, Spreeuw R J C, Rolston S L, Westbrook C I, Phillips W D, Marte P, Zoller P 1994 Phys. Rev. Lett. 72 997
[2] Vitanov N V, Fleischhauer M, Shore B W, Bergmann K 2001 Adv. At. Mol. Opt. Phys. 46 55
[3] Ischenko A A, Weber P M, Miller R J D 2017 Chem. Rev. 117 11066
[4] Meng S Y, Wu W 2009 Acta Phys. Sin. 58 5311
[5] Zhou F, Wen K, Wang L W, Liu F D, Han W, Wang P J, Huang L H, Chen L C, Meng Z M, Zhang J 2021 Acta Phys. Sin. 70 154204
[6] Kumar P, Sarma A K 2013 Phys. Rev. A 87 025401
[7] Ohta Y, Hoki K, Fujimura Y 2002 J. Chem. Phys. 116 7509
[8] Sun G, Wen X, Mao B, Chen J, Yu Y, Wu P, Han S 2010 Nat. Commun. 1 51
[9] Wei L F, Johansson J R, Cen L X, Ashhab S, Nori F 2008 Phys. Rev. Lett. 100 113601
[10] Vepsäläinen A, Danilin S, Paraoanu G S 2019 Sci. Adv. 5 eaau5999
[11] Giannelli L, Arimondo E 2014 Phys. Rev. A 89 033419
[12] Chen X, Lizuain I, Ruschhaupt A, Guéry-Odelin D, Muga J G 2010 Phys. Rev. Lett. 105 123003
[13] del Campo A 2013 Phys. Rev. Lett. 111 100502
[14] Chen X, Muga J G 2012 Phys. Rev. A 86 033405
[15] Huang B H, Kang Y H, Chen Y H, Wu Q C, Song J, Xia Y 2017 Phys. Rev. A 96 022314
[16] Li W, Song Y 2022 J. Phys. B: At. Mol. Opt. Phys. 55 125501
[17] Song Y, Kestner J P, Wang X, Sarma S D 2016 Phys. Rev. A 94 012321
[18] Liu X, Fang G Y, Liao Q H, Liu S T 2014 Phys. Rev. A 90 062330
[19] Sornborger A T, Cleland A N, Geller M R 2004 Phys. Rev. A 70 052315
[20] Malz D, Nunnenkamp A 2016 Phys. Rev. A 94 053820
[21] Scheuer J, Kong X, Said R S, Chen J, Kurz A, Marseglia L, Du J, Hemmer P R, Montangero S, Calarco T, Naydenov B, Jelezko F 2014 New J. Phys. 16 093022
[22] Chen J, Wei L F 2015 Phys. Rev. A 91 023405
[23] Kang Y H, Chen Y H, Huang B H, Song J, Xia Y 2017 Ann. Physik 529 1700004
[24] Hioe F T 1985 Phys. Rev. A 32 2824
[25] Lewis H R, Riesenfeld W B 1969 J. Math. Phys. 10 1458
[26] Traverso A J, Sanchez G R, Yuan L, Wang K, Voronine D V, Zheltikov A M, Rostovtsev Y, Sautenkov V A, Sokolov A V, North S W, Scully M O 2012 Proc. Natl Acad. Sci. 109 15185
计量
- 文章访问数: 37
- PDF下载量: 1
- 被引次数: 0