搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维格点空间相对论密度泛函理论:基于PC-PK1的裂变位垒研究

黄逸涵 李博 赵鹏巍

引用本文:
Citation:

三维格点空间相对论密度泛函理论:基于PC-PK1的裂变位垒研究

黄逸涵, 李博, 赵鹏巍

Relativistic density functional theory in 3D lattice: Fission barriers with PC-PK1

HUANG Yihan, LI Bo, ZHAO Pengwei
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 本文利用三维格点空间相对论密度泛函理论,在轴对称破缺,反射对称破缺和V4对称性破缺时,计算了锕系原子核的势能曲线,探索了所有四极和八极形变自由度对裂变内垒,外垒和同核异能态的影响.我们的计算结果表明:反射对称性破缺能显著地降低外垒的高度,轴对称性破缺能同时降低内垒和外垒的高度,V4对称性破缺对内垒和外垒几乎没有影响,同核异能态几乎不受对称性破缺的影响.基于相对论密度泛函PC-PK1和单极对相互作用的计算结果很好地再现了实验上提取的裂变内垒和外垒高度的经验值,对同核异能态的能量经验值有轻微低估.本文数据集可在https://www.doi.org/10.57760/sciencedb.j00213.00229中访问获取.(审稿阶段请通过私有访问链接查看本文数据集https://www.scidb.cn/anonymous/UVp6VUp2)
    Nuclear fission is a decay process by which a heavy nucleus splits into two or more lighter nuclei. It plays a crucial role in the synthesis of superheavy elements, the rapid neutron-capture process, nuclear energy application and so on. The fission barrier is an important property of heavy nuclei, because its height and width directly relate with the lifetime of heavy nuclei, and affect charge yield, mass yield, and kinetic energy of fission fragments. In our study, the potential energy curves of actinide nuclei are obtained from the relativistic density functional theory in 3D lattice when the axial symmetry, reflection symmetry and V4 symmetry are broken in turn. The effects of all the quadrupole and octupole deformation degrees of freedom on the inner barrier, outer barrier, and the fission isomeric state are investigated. It is found that breaking the reflection symmetry can lower the outer fission barriers significantly, breaking the axial symmetry can lower both the inner and outer barriers, breaking the V4 symmetry has little effect on the inner and outer barriers, and the fission isomeric state is almost unaffected by symmetry breaking. Based on the relativistic density functional PC-PK1 and monopole pairing interaction, our results well reproduce the empirical values of the inner and outer barriers extracted from experiments, and the energies of the fission isomeric states are slightly underestimated. All the data presented in this paper is openly available at https://www.doi.org/10.57760/sciencedb.j00213.00229.(Please use the private access link https://www.scidb.cn/anonymous/UVp6VUp2 access the dataset during the peer review process)
  • [1]

    Schmidt K H, Jurado B 2018 Rep. Prog. Phys. 81 106301

    [2]

    Bender M, Bernard R, Bertsch G, Chiba S, Dobaczewski J, Dubray N, Giuliani S A, Hagino K, Lacroix D, Li Z, Magierski P, Maruhn J, Nazarewicz W, Pei J, Péru S, Pillet N, Randrup J, Regnier D, Reinhard P G, Robledo L M, Ryssens W, Sadhukhan J, Scamps G, Schunck N, Simenel C, Skalski J, Stetcu I, Stevenson P, Umar S, Verriere M, Vretenar D, Warda M, Aberg S 2020 J. Phys. G:Nucl. Part. Phys. 47 113002

    [3]

    Schunck N, Robledo L M 2016 Rep. Prog. Phys. 79 116301

    [4]

    Schunck N, Regnier D 2022 Prog. Part. Nucl. Phys. 125 103963

    [5]

    Hofmann S, Münzenberg G 2000 Rev. Mod. Phys. 72 733

    [6]

    Oganessian Y T, Abdullin F S, Bailey P D, Benker D E, Bennett M E, Dmitriev S N, Ezold J G, Hamilton J H, Henderson R A, Itkis M G, Lobanov Y V, Mezentsev A N, Moody K J, Nelson S L, Polyakov A N, Porter C E, Ramayya A V, Riley F D, Roberto J B, Ryabinin M A, Rykaczewski K P, Sagaidak R N, Shaughnessy D A, Shirokovsky I V, Stoyer M A, Subbotin V G, Sudowe R, Sukhov A M, Tsyganov Y S, Utyonkov V K, Voinov A A, Vostokin G K, Wilk P A 2010 Phys. Rev. Lett. 104 142502

    [7]

    Möller P, Sierk A J, Ichikawa T, Iwamoto A, Bengtsson R, Uhrenholt H, Aberg S 2009 Phys. Rev. C 79 064304

    [8]

    Pei J C, Nazarewicz W, Sheikh J A, Kerman A K 2009 Phys. Rev. Lett. 102 192501

    [9]

    Korobkin O, Rosswog S, Arcones A, Winteler C 2012 Mon. Not. R. Astron. Soc. 426 1940

    [10]

    Just O, Bauswein A, Pulpillo R A, Goriely S, Janka H T 2015 Mon. Not. R. Astron. Soc. 448 541

    [11]

    Chen J W, Pei J C, Qiang Y, Chi J H 2023 Chin. Phys. Lett. 40 012401

    [12]

    Möller P, Madland D, Sierk A, Iwamoto A 2001 Nature 409 785790

    [13]

    Pomorski K, Dudek J 2003 Phys. Rev. C 67 044316

    [14]

    Ivanyuk F A, Pomorski K 2009 Phys. Rev. C 79 054327

    [15]

    Kowal M, Jachimowicz P, Sobiczewski A 2010 Phys. Rev. C 82 014303

    [16]

    Royer G, Jaffré M, Moreau D 2012 Phys. Rev. C 86 044326

    [17]

    Mamdouh A, Pearson J, Rayet M, Tondeur F 2001 Nucl. Phys. A 679 337

    [18]

    Bürvenich T, Bender M, Maruhn J A, Reinhard P G 2004 Phys. Rev. C 69 014307

    [19]

    Samyn M, Goriely S, Pearson J M 2005 Phys. Rev. C 72 044316

    [20]

    Minato F, Chiba S, Hagino K 2009 Nucl. Phys. A 831 150

    [21]

    Egido J L, Robledo L M 2000 Phys. Rev. Lett. 85 1198

    [22]

    Kortelainen M, McDonnell J, Nazarewicz W, Reinhard P G, Sarich J, Schunck N, Stoitsov M V, Wild S M 2012 Phys. Rev. C 85 024304

    [23]

    McDonnell J, Schunck N, Nazarewicz W 2013 in Fission and Properties of Neutron-Rich Nuclei: Proceedings of the Fifth International Conference on Fission and Properties of Neutron-Rich Nuclei (ICFN5)(Singapore:World Scientific Publishing Company) pp597-604

    [24]

    Staszczak A, Baran A, Nazarewicz W 2013 Phys. Rev. C 87 024320

    [25]

    Schunck N, Duke D, Carr H, Knoll A 2014 Phys. Rev. C 90 054305

    [26]

    Blum V, Maruhn J A, Reinhard P G, Greiner W 1994 Phys. Lett. B 323 262

    [27]

    Zhang W, Zhang S S, Zhang S Q, Meng J 2003 Chin. Phys. Lett. 20 1694

    [28]

    Lü H F, Geng L S, Meng J 2006 Chin. Phys. Lett. 23 2940

    [29]

    Li Z P, Nikšić T, Vretenar D, Ring P, Meng J 2010 Phys. Rev. C 81 064321

    [30]

    Abusara H, Afanasjev A V, Ring P 2010 Phys. Rev. C 82 044303

    [31]

    Lu B N, Zhao E G, Zhou S G 2012 Phys. Rev. C 85 011301

    [32]

    Lu B N, Zhao J, Zhao E G, Zhou S 2012 EPJ Web Conf. 38 05003

    [33]

    Abusara H, Afanasjev A V, Ring P 2012 Phys. Rev. C 85 024314

    [34]

    Prassa V, Nikšić T, Lalazissis G A, Vretenar D 2012 Phys. Rev. C 86 024317

    [35]

    Möller P, Sierk A J, Iwamoto A 2004 Phys. Rev. Lett. 92 072501

    [36]

    Brack M, Damgaard J, Jensen A S, Pauli H C, Strutinsky V M, Wong C Y 1972 Rev. Mod. Phys. 44 320

    [37]

    Pashkevich V 1969 Nucl. Phys. A 133 400

    [38]

    Möller P, Nilsson S G 1970 Phys. Lett. B 31 283

    [39]

    Randrup J, Larsson S E, Möller P, Nilsson S G, Pomorski K, Sobiczewski A 1976 Phys. Rev. C 13 229

    [40]

    Pashkevich V 1971 Nucl. Phys. A 169 275

    [41]

    Pauli H C, Ledergerber T, Brack M 1971 Phys. Lett. B 34 264

    [42]

    Bender M, Heenen P H, Reinhard P G 2003 Rev. Mod. Phys. 75 121

    [43]

    Meng J 2016 Relativistic Density Functional for Nuclear Structure (Singapore:World Scientific) p716

    [44]

    Girod M, Grammaticos B 1983 Phys. Rev. C 27 2317

    [45]

    Rutz K, Maruhn J, Reinhard P G, Greiner W 1995 Nucl. Phys. A 590 680

    [46]

    Bonneau L, Quentin P, Samsœn D 2004 Eur. Phys. J. A 21 391

    [47]

    Ryssens W, Scamps G, Goriely S, Bender M 2022 Eur. Phys. J. A 50 246

    [48]

    Ryssens W, Scamps G, Goriely S, Bender M 2023 Eur. Phys. J. A 59 96

    [49]

    Lu B N, Zhao J, Zhao E G, Zhou S G 2014 Phys. Rev. C 89 014323

    [50]

    Ma Z Q 2006 Group Theory in Physics (Peking:Science Press) p22(in Chinese)[马中骐2006物理 学中的群论(北京:科学出版社)第22页]

    [51]

    Ren Z X, Zhang S Q, Meng J 2017 Phys. Rev. C 95 024313

    [52]

    Li B, Ren Z X, Zhao P W 2020 Phys. Rev. C 102 044307

    [53]

    Xu F F, Li B, Ren Z X, Zhao P W 2024 Phys. Rev. C 109 014311

    [54]

    Ring P 1996 Prog. Part. Nucl. Phys. 37 193

    [55]

    Ren Z X, Zhao P W 2020 Phys. Rev. C 102 021301

    [56]

    Vretenar D, Afanasjev A, Lalazissis G, Ring P 2005 Phys. Rep. 409 101

    [57]

    Meng J, Peng J, Zhang S Q, Zhao P W 2013 Front. Phys. 8 55

    [58]

    Ren Z X, Zhang S Q, Zhao P W, N I, Maruhn J A, Meng J 2019 Sci. China Phys. Mech. Astron. 62 112062

    [59]

    Ren Z X, Zhao P W, Zhang S Q, Meng J 2020 Nucl. Phys. A 996 121696

    [60]

    Xu F F, Li B, Ring P, Zhao P W 2024 Phys. Lett. B 856 138893

    [61]

    Ren Z X, Zhao P W, Meng J 2022 Phys. Rev. C 105 L011301

    [62]

    Li B, Zhao P W, Meng J 2024 Phys. Lett. B 856 138877

    [63]

    Xu F F, Wang Y K, Wang Y P, Ring P, Zhao P W 2024 Phys. Rev. Lett. 133 022501

    [64]

    Zhao P W, Li Z P, Yao J M, Meng J 2010 Phys. Rev. C 82 054319

    [65]

    Yang Y L, Wang Y K, Zhao P W, Li Z P 2021 Phys. Rev. C 104 054312

    [66]

    Yang Y L, Zhao P W, Li Z P 2023 Phys. Rev. C 107 024308

    [67]

    Ryssens W, Hellemans V, Bender M, Heenen P H 2015 Comput. Phys. Commun. 190 231

    [68]

    Bender M, Rutz K, Reinhard P, Maruhn J A 2000 Eur. Phys. J. A 8 59

    [69]

    Staszczak A, Stoitsov M, Baran A, Nazarewicz W 2010 Eur. Phys. J. A 46 85

    [70]

    Wang M, Huang W, Kondev F, Audi G, Naimi S 2021 Chin. Phys. C 45 030003

    [71]

    Kondev F, Wang M, Huang W, Naimi S, Audi G 2021 Chin. Phys. C 45 030001

    [72]

    Wang M, Audi G, Kondev F, Huang W J, Naimi S, Xu X 2017 Chin. Phys. C 41 030003

    [73]

    Agbemava S E, Afanasjev A V, Ray D, Ring P 2014 Phys. Rev. C 89 054320

    [74]

    Ring P, Schuck P 1980 The Nuclear Many-Body Problem (Heidelberg:Springer Berlin) pp244-279

    [75]

    Capote R, Herman M, Oblozinský P, Young P, Goriely S, Belgya T, Ignatyuk A, Koning A, Hilaire S, Plujko V, Avrigeanu M, Bersillon O, Chadwick M, Fukahori T, Ge Z, Han Y, Kailas S, Kopecky J, Maslov V, Reffo G, Sin M, Soukhovitskii E, Talou P 2009 Nucl. Data Sheets 110 3107

    [76]

    Singh B, Zywina R, Firestone R B 2002 Nucl. Data Sheets 97 241

  • [1] 王雅静, 李桂霞, 王治华, 宫立基, 王秀芳. Imogolite类纳米管直径单分散性密度泛函理论研究. 物理学报, doi: 10.7498/aps.65.048101
    [2] 王辉辉, 蒙林, 刘大刚, 刘腊群, 杨超. 基于相对论返波管的全三维PIC/PSO数值优化研究. 物理学报, doi: 10.7498/aps.62.138401
    [3] 张毅. 相对论性力学系统的Birkhoff对称性与守恒量. 物理学报, doi: 10.7498/aps.61.214501
    [4] 王霞, 王自霞, 吕浩, 赵秋玲. 全息干涉光学格点一到三维空间维度的简捷变换. 物理学报, doi: 10.7498/aps.59.4656
    [5] 金蓉, 谌晓洪. 密度泛函理论对ZrnPd团簇结构和性质的研究. 物理学报, doi: 10.7498/aps.59.6955
    [6] 周晶晶, 陈云贵, 吴朝玲, 肖艳, 高涛. NaAlH4 表面Ti催化空间构型和X射线吸收光谱: Car-Parrinello分子动力学和密度泛函理论研究. 物理学报, doi: 10.7498/aps.59.7452
    [7] 丁斌刚, 张大立, 鲁定辉. 相对论平均场理论框架下对能的系统研究. 物理学报, doi: 10.7498/aps.58.6086
    [8] 王清林, 葛桂贤, 赵文杰, 雷雪玲, 闫玉丽, 杨 致, 罗有华. 密度泛函理论对CoBen(n=1—12)团簇结构和性质的研究. 物理学报, doi: 10.7498/aps.56.3219
    [9] 张 凯, 冯 俊. 相对论Birkhoff系统的对称性与稳定性. 物理学报, doi: 10.7498/aps.54.2985
    [10] 张 毅, 葛伟宽. 相对论性力学系统的Mei对称性导致的新守恒律. 物理学报, doi: 10.7498/aps.54.1464
    [11] 贾利群. 转动系统的相对论性分析静力学理论. 物理学报, doi: 10.7498/aps.52.1039
    [12] 方建会, 闫向宏, 陈培胜. 相对论力学系统的形式不变性与Noether对称性. 物理学报, doi: 10.7498/aps.52.1561
    [13] 方建会, 陈培胜, 张 军, 李 红. 相对论力学系统的形式不变性与Lie对称性. 物理学报, doi: 10.7498/aps.52.2945
    [14] 傅景礼, 陈立群, 谢凤萍. 相对论性Birkhoff系统的对称性摄动及其逆问题. 物理学报, doi: 10.7498/aps.52.2664
    [15] 罗绍凯, 傅景礼, 陈向炜. 转动系统相对论性Birkhoff动力学的基本理论. 物理学报, doi: 10.7498/aps.50.383
    [16] 方建会, 赵嵩卿. 相对论性转动变质量系统的Lie对称性与守恒量. 物理学报, doi: 10.7498/aps.50.390
    [17] 傅景礼, 王新民. 相对论性Birkhoff系统的Lie对称性和守恒量. 物理学报, doi: 10.7498/aps.49.1023
    [18] 叶令. 定域密度泛函理论对金刚石(100)面再构的研究. 物理学报, doi: 10.7498/aps.42.87
    [19] 赵中新, 李家明. 非相对论性和相对论性原子组态相互作用理论——激发能量和辐射跃迁几率. 物理学报, doi: 10.7498/aps.34.1469
    [20] 王永丰, 李华钟. 关于弱相互作用SU3对称性的一点注记. 物理学报, doi: 10.7498/aps.21.1921
计量
  • 文章访问数:  79
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-12-03

/

返回文章
返回