搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

1 μm波段水分子吸收光谱双光程同步测量方法研究

郑健捷 朱文越 刘强 马宏亮 刘锟 钱仙妹 陈杰 杨韬

引用本文:
Citation:

1 μm波段水分子吸收光谱双光程同步测量方法研究

郑健捷, 朱文越, 刘强, 马宏亮, 刘锟, 钱仙妹, 陈杰, 杨韬

Study on dual-optical paths for simultaneous measurement method of water vapor absorption spectrum in 1 μm band

Zheng Jian-Jie, Zhu Wen-Yue, Liu Qiang, Ma Hong-Liang, Liu Kun, Qian Xian-Mei, Chen Jie, Yang Tao
PDF
HTML
导出引用
  • 基于双光程气体多通吸收池, 提出了一种单吸收池双光程(长光程: 72.46 m; 短光程: 36.23 m)同步测量水分子吸收光谱的测量方法, 并结合窄线宽外腔半导体激光器和高精度Fabry-Perot标准具, 发展了一套1 μm波段的高分辨率水分子吸收光谱双光程同步测量装置. 在测量装置建立后, 精确测量了Fabry-Perot标准具的自由光谱范围, 并详细评估了该系统中Fabry-Perot标准具以及双光程气体多通吸收池内压力和温度的稳定性. 利用该装置测量了9152.53 cm–1处水分子在双光程下的吸收光谱, 分别反演得到了长光程和短光程下的分子吸收线强和自加宽系数. 双光程吸收线强和自加宽系数的平均值与HITRAN2016数据库相应数据的相对偏差分别为0.78 %和3.8 %, 该结果验证了双光程同步测量方法的可行性和测量装置的可靠性.
    Based on the gas multi-pass absorption cell with dual-optical paths (long optical path: 72.46 m; short optical path: 36.23 m), a measurement method of simultaneously detecting water vapor absorption spectra is advanced. Combining with a narrow line-width external cavity diode laser and a high-precision Fabry-Perot etalon, a high-resolution simultaneous measurement device with dual-optical paths for water vapor absorption spectra in 1 μm band is developed. Since the external cavity diode laser has excellent polarization characteristics which could be combined with a half-wave plate and a polarization beam splitter to implement the laser transmissions in dual-optical paths simultaneously. Both the multi-pass absorption cell and the Fabry-Perot etalon in the measurement device have pressure and temperature control units, which are utilized for achieving ambient stability. The free spectral range of Fabry-Perot etalon is accurately measured by the method of optical comb frequency. Corresponding free spectral range with a deviation of only 0.02 % from the theoretical value is obtained to be a value of 749.52 MHz, and the influence of temperature on the frequency shift of etalon is less than 1 % of the measured value. The stability of the pressure and the temperature in the dual-optical path gas multi-pass absorption cell in the system are evaluated in detail, and the calculated relative errors are not more than 0.03 % and 0.02 %, respectively. At a temperature of 300 K, the system is used to measure the absorption spectra of water vapor at 9152.53 cm–1 from 400 Pa to 2000 Pa on dual-optical paths, then the integrated absorbance and Lorentzian line-width of water vapor for long optical path and short optical path are inverted by fitting absorption spectra with Voigt profile respectively. The absorption line intensities and self-broadening coefficients are acquired by performing linear fitting to the integrated absorbance and Lorentzian line-width under different pressures. And the relative deviations of the average values of the dual-optical path absorption line intensities (converted to the reference temperature of 296 K) and the self-broadening coefficients and the corresponding data of the HITRAN2016 database are 0.78 % and 3.8 %, respectively. Consequently, the feasibility of the dual-optical path simultaneous measurement method and the reliability of the measurement device are demonstrated by the results.
      通信作者: 朱文越, zhuwenyue@aiofm.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 41805014)、先进激光技术安徽省实验室主任基金(批准号: 20191002)、安徽省高校优秀青年人才支持计划(重点项目)(批准号: gxyqZD2020032)、中国科学院战略性先导科技专项(A类)(批准号: XDA17010104)和中国科学院大气光学重点实验室开放课题基金(批准号: JJ-19-01)资助的课题
      Corresponding author: Zhu Wen-Yue, zhuwenyue@aiofm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 41805014), the Foundation of Advanced Laser Technology Laboratory of Anhui Province, China (Grant No. 20191002), the Key Program of the Youth Talent Support Plan in Universities of Anhui Province, China (Grant No. gxyqZD2020032), the Strategic Priority Research Program (A) of Chinese Academy of Sciences (Grant No. XDA17010104), and the Open Research Fund of Key Laboratory of Atmospheric Optics, Chinese Academy of Sciences (Grant No. JJ-19-01)
    [1]

    马宏亮, 查申龙, 查长礼, 张启磊, 蔡雪原, 曹振松, 占生宝, 潘盼 2019 量子电子学报 36 663Google Scholar

    Ma H L, Zha S L, Zha C L, Zhang Q L, Cai X Y, Cao Z S, Zhan S B, Pan P 2019 Chin. J. Quantum Elect. 36 663Google Scholar

    [2]

    Stevens B, Bony S 2013 Phys. Today 66 29Google Scholar

    [3]

    Sherwood S C, Roca R, Weckwerth T M, Andronova N G 2010 Rev. Geophys. 48 1481Google Scholar

    [4]

    饶瑞中 2012 现代大气光学 (北京: 科学出版社) 第166页

    Rao R Z 2012 Modern Atmospheric Optics (Beijing: Science Press) p166 (in Chinese)

    [5]

    朱文越, 钱仙妹, 饶瑞中, 王辉华 2019 红外与激光工程 48 19Google Scholar

    Zhu W Y, Qian X M, Rao R Z, Wang H H 2019 Infrared Laser Eng. 48 19Google Scholar

    [6]

    朱文越, 王辉华, 陈小威, 钱仙妹 2020 量子电子学报 37 524Google Scholar

    Zhu W Y, Wang H H, Chen X W, Qian X M 2020 Chin. J. Quantum Elect. 37 524Google Scholar

    [7]

    Mandin J Y, Chevillard J P, Flaud J M, Camy-Peyret C 1988 Can. J. Phys. 66 997Google Scholar

    [8]

    Schermaul R, Learner R C M, Newnham D A, Williams R G, Ballard J, Zobov N F, Belmiloud D, Tennyson J 2001 J. Mol. Spectrosc. 208 32Google Scholar

    [9]

    Brown L R, Toth R A, Dulick M 2002 J. Mol. Spectrosc. 212 57Google Scholar

    [10]

    Mérienne M F, Jenouvrier A, Hermans C, Vandaele A C, Carleer M, Clerbaux C, Coheur P F, Colin R, Fally S, Bach M 2003 J. Quant. Spectrosc. Radiat. Transfer 82 99Google Scholar

    [11]

    Tolchenov R, Tennyson J 2008 J. Quant. Spectrosc. Radiat. Transfer 109 559Google Scholar

    [12]

    Jacquemart D, Gamache R, Rothman L S 2005 J. Quant. Spectrosc. Radiat. Transfer 96 205Google Scholar

    [13]

    Lodi L, Tennyson J 2012 J. Quant. Spectrosc. Radiat. Transfer 113 850Google Scholar

    [14]

    Tennyson J, Bernath P F, Brown L R, et al. 2009 J. Quant. Spectrosc. Radiat. Transfer 110 573Google Scholar

    [15]

    Furtenbacher T, Császár A G, Tennyson J 2007 J. Mol. Spectrosc. 245 115Google Scholar

    [16]

    Gordon I E, Rothman L S, Hill C, et al. 2017 J. Quant. Spectrosc. Radiat. Transfer 203 3Google Scholar

    [17]

    Cui R Y, Dong L, Wu H P, Chen W D, Frank K T 2020 Appl. Phys. Lett. 116 091103Google Scholar

    [18]

    Cui R Y, Dong L, Wu H P, Li S Z, Yin X K, Zhang L, Ma W G, Y W B, Frank K T 2019 Opt. Lett. 44 1108Google Scholar

    [19]

    鲁红刚, 蒋燕义, 毕志毅 2006 中国激光 33 1675Google Scholar

    Lu H G, Jiang Y Y, Bi Z Y 2006 Chin. J. Lasers 33 1675Google Scholar

    [20]

    孙旭涛, 刘继桥, 周军, 陈卫标 2008 中国激光 07 1005Google Scholar

    Sun X T, Liu J Q, Zhou J, Chen W B 2008 Chin. J. Lasers 07 1005Google Scholar

    [21]

    闫露露 2014硕士学位论文(西安: 陕西科技大学)

    Yan L L 2014 M. S. Dissertation (Xi'an: Shaanxi University of Science and Technology) (in Chinese)

    [22]

    杨奕, 孙青, 邓玉强, 冯美琦, 赵昆 2017 中国激光 44 224

    Yang Y, Sun Q, Deng Y Q, Feng M Q, Zhao K 2017 Chin. J. Lasers 44 224

    [23]

    Lodi L, Tennyson J, Polyansky O L 2011 J. Chem. Phys. 135 034113Google Scholar

    [24]

    聂伟, 阚瑞峰, 许振宇, 杨晨光, 陈兵, 夏晖晖, 魏敏, 陈祥, 姚路, 李杭, 范雪丽, 胡佳屹 2017 物理学报 66 054207Google Scholar

    Nie W, Kan R F, Xu Z Y, Yang C G, Chen B, Xia H H, Wei M, Chen X, Yao L, Li H, Fan X L, Hu J Y 2017 Acta Phys. Sin. 66 054207Google Scholar

  • 图 1  实验装置示意图

    Fig. 1.  Sketch of the experimental setup.

    图 2  吸收池结构示意图 (a)吸收池的正面; (b)吸收池的背面

    Fig. 2.  Schematics of absorption cell structure: (a) Front of the absorption cell; (b) back of the absorption cell.

    图 3  He-Ne激光器在反射镜上的长光程(外圈与中圈)和短光程(内圈)实际光斑

    Fig. 3.  The actual spots of long optical path (outer circle and middle circle) and short optical path (inner circle) of He-Ne laser on the mirror.

    图 4  70 h内的多通吸收池中压力变化图

    Fig. 4.  Pressure change in the multi-pass absorption cell in 70 h.

    图 5  1.5 h内激光器与光梳拍频信号(fb)的频率变化

    Fig. 5.  Frequency variation of the beat signal (fb) between the laser and the optical comb within 1.5 h.

    图 6  同时记录的光谱示例 (a)短光程水分子吸收信号; (b)长光程水分子吸收信号; (c)F-P标准具纵模信号

    Fig. 6.  Examples of spectra recorded simultaneously: (a) Short optical path water vapor absorption signal; (b) long optical path water vapor absorption signal; (c) the longitudinal mode signal of F-P etalon.

    图 7  (a), (b)在长光程中9152.53 cm–1处纯水分子的吸收系数和拟合残差; (c), (d)在短光程中纯水分子在相同光谱线位置的吸收系数和拟合残差

    Fig. 7.  (a), (b) Absorption coefficient and fitting residual of water vapor at 9152.53 cm–1 in long optical path; (c), (d) absorption coefficients and fitting residuals of pure water vapor at the same spectral line position in a short optical path.

    图 8  温度300 K时, 水分子在9152.53 cm–1处单位距离上的积分吸光度与粒子数浓度的线性拟合结果及其拟合残差(左上角小图显示了3.626 × 1017 molecule·cm–3下5组单位距离上积分吸光度平均后的标准差. 因标准差过小, 主图上未完全显示)

    Fig. 8.  At a temperature of 300 K, the linear fitting results and fitting residual errors of the integrated absorbance per unit distance of water vapor at 9152.53 cm–1 against the particle number concentration. (The minor image in the upper left corner shows the average standard deviation of the integrated absorbance of the 5 groups of unit distances under 3.626 × 1017 molecule·cm–3. However, the standard deviation is so small that it is not fully displayed on the main image)

    图 9  300 K时, 9152.53 cm–1处水分子洛伦兹线宽与压力的线性拟合结果

    Fig. 9.  At a temperature of 300 K, the linear fitting result of the Lorentzian line width against pressure of water vapor at 9152.53 cm–1.

    表 1  296 K温度下9153 cm–1处各参数与其对线强不确定度的贡献

    Table 1.  Parameters at 9153 cm–1 and their contribution to the uncertainty of line intensityat 296 K.

    参数参数值相对不确
    定度/%
    对线强不确定度的贡献/%
    Afit0.01126542 cm–10.01499.9746
    kw10.720.0127
    T300 K0.017~0
    KT1.011390.028
    V2.6 L00
    P397.3 Pa0.025~0
    L7246 cm0.13~0
    qleak4.54 × 10–4 Pa·L·s–10.003~0
    riso0.99730.010.0127
    S1.6435 × 10–23 cm·molecule–10.74
    下载: 导出CSV
  • [1]

    马宏亮, 查申龙, 查长礼, 张启磊, 蔡雪原, 曹振松, 占生宝, 潘盼 2019 量子电子学报 36 663Google Scholar

    Ma H L, Zha S L, Zha C L, Zhang Q L, Cai X Y, Cao Z S, Zhan S B, Pan P 2019 Chin. J. Quantum Elect. 36 663Google Scholar

    [2]

    Stevens B, Bony S 2013 Phys. Today 66 29Google Scholar

    [3]

    Sherwood S C, Roca R, Weckwerth T M, Andronova N G 2010 Rev. Geophys. 48 1481Google Scholar

    [4]

    饶瑞中 2012 现代大气光学 (北京: 科学出版社) 第166页

    Rao R Z 2012 Modern Atmospheric Optics (Beijing: Science Press) p166 (in Chinese)

    [5]

    朱文越, 钱仙妹, 饶瑞中, 王辉华 2019 红外与激光工程 48 19Google Scholar

    Zhu W Y, Qian X M, Rao R Z, Wang H H 2019 Infrared Laser Eng. 48 19Google Scholar

    [6]

    朱文越, 王辉华, 陈小威, 钱仙妹 2020 量子电子学报 37 524Google Scholar

    Zhu W Y, Wang H H, Chen X W, Qian X M 2020 Chin. J. Quantum Elect. 37 524Google Scholar

    [7]

    Mandin J Y, Chevillard J P, Flaud J M, Camy-Peyret C 1988 Can. J. Phys. 66 997Google Scholar

    [8]

    Schermaul R, Learner R C M, Newnham D A, Williams R G, Ballard J, Zobov N F, Belmiloud D, Tennyson J 2001 J. Mol. Spectrosc. 208 32Google Scholar

    [9]

    Brown L R, Toth R A, Dulick M 2002 J. Mol. Spectrosc. 212 57Google Scholar

    [10]

    Mérienne M F, Jenouvrier A, Hermans C, Vandaele A C, Carleer M, Clerbaux C, Coheur P F, Colin R, Fally S, Bach M 2003 J. Quant. Spectrosc. Radiat. Transfer 82 99Google Scholar

    [11]

    Tolchenov R, Tennyson J 2008 J. Quant. Spectrosc. Radiat. Transfer 109 559Google Scholar

    [12]

    Jacquemart D, Gamache R, Rothman L S 2005 J. Quant. Spectrosc. Radiat. Transfer 96 205Google Scholar

    [13]

    Lodi L, Tennyson J 2012 J. Quant. Spectrosc. Radiat. Transfer 113 850Google Scholar

    [14]

    Tennyson J, Bernath P F, Brown L R, et al. 2009 J. Quant. Spectrosc. Radiat. Transfer 110 573Google Scholar

    [15]

    Furtenbacher T, Császár A G, Tennyson J 2007 J. Mol. Spectrosc. 245 115Google Scholar

    [16]

    Gordon I E, Rothman L S, Hill C, et al. 2017 J. Quant. Spectrosc. Radiat. Transfer 203 3Google Scholar

    [17]

    Cui R Y, Dong L, Wu H P, Chen W D, Frank K T 2020 Appl. Phys. Lett. 116 091103Google Scholar

    [18]

    Cui R Y, Dong L, Wu H P, Li S Z, Yin X K, Zhang L, Ma W G, Y W B, Frank K T 2019 Opt. Lett. 44 1108Google Scholar

    [19]

    鲁红刚, 蒋燕义, 毕志毅 2006 中国激光 33 1675Google Scholar

    Lu H G, Jiang Y Y, Bi Z Y 2006 Chin. J. Lasers 33 1675Google Scholar

    [20]

    孙旭涛, 刘继桥, 周军, 陈卫标 2008 中国激光 07 1005Google Scholar

    Sun X T, Liu J Q, Zhou J, Chen W B 2008 Chin. J. Lasers 07 1005Google Scholar

    [21]

    闫露露 2014硕士学位论文(西安: 陕西科技大学)

    Yan L L 2014 M. S. Dissertation (Xi'an: Shaanxi University of Science and Technology) (in Chinese)

    [22]

    杨奕, 孙青, 邓玉强, 冯美琦, 赵昆 2017 中国激光 44 224

    Yang Y, Sun Q, Deng Y Q, Feng M Q, Zhao K 2017 Chin. J. Lasers 44 224

    [23]

    Lodi L, Tennyson J, Polyansky O L 2011 J. Chem. Phys. 135 034113Google Scholar

    [24]

    聂伟, 阚瑞峰, 许振宇, 杨晨光, 陈兵, 夏晖晖, 魏敏, 陈祥, 姚路, 李杭, 范雪丽, 胡佳屹 2017 物理学报 66 054207Google Scholar

    Nie W, Kan R F, Xu Z Y, Yang C G, Chen B, Xia H H, Wei M, Chen X, Yao L, Li H, Fan X L, Hu J Y 2017 Acta Phys. Sin. 66 054207Google Scholar

  • [1] 彭翔, 刘恩海, 田书林, 方亮. 基于多普勒非对称空间外差光谱测速的复合光程差相移解算方法. 物理学报, 2022, 71(24): 240601. doi: 10.7498/aps.71.20221469
    [2] 杨韬, 钱仙妹, 马宏亮, 刘强, 朱文越, 郑健捷, 陈杰, 徐秋怡. 1.1 μm波段水分子的CO2加宽系数. 物理学报, 2022, 71(20): 203301. doi: 10.7498/aps.71.20220700
    [3] 张小安, 梅策香, 张颖, 梁昌慧, 周贤明, 曾利霞, 李耀宗, 柳钰, 向前兰, 孟惠, 王益军. 129Xeq+离子入射Cu靶表面激发的近红外光谱线和X射线谱. 物理学报, 2020, 69(21): 213301. doi: 10.7498/aps.69.20200500
    [4] 许兵, 邱子阳, 杨润, 戴耀民, 邱祥冈. 拓扑半金属的红外光谱研究. 物理学报, 2019, 68(22): 227804. doi: 10.7498/aps.68.20191510
    [5] 吴宜青, 刘津, 莫欣欣, 孙通, 刘木华. 共轴双脉冲激光诱导击穿光谱结合双谱线内标法定量分析植物油中的铬. 物理学报, 2017, 66(5): 054206. doi: 10.7498/aps.66.054206
    [6] 李晋华, 王召巴, 王志斌, 张敏娟, 曹俊卿. 氧气A带吸收系数的温度依赖关系研究. 物理学报, 2014, 63(21): 214204. doi: 10.7498/aps.63.214204
    [7] 彭志敏, 丁艳军, 翟晓东. 基于火焰发射光谱的转动温度和振动温度的测量. 物理学报, 2011, 60(10): 104702. doi: 10.7498/aps.60.104702
    [8] 崔昊杨, 李志锋, 马法君, 陈效双, 陆卫. 硅的间接跃迁双光子吸收系数谱. 物理学报, 2010, 59(10): 7055-7059. doi: 10.7498/aps.59.7055
    [9] 刘硕, 陈高, 陈基根, 朱颀人. 采用双脉冲提高谐波谱的谱线密度. 物理学报, 2009, 58(3): 1574-1578. doi: 10.7498/aps.58.1574
    [10] 张小安, 杨治虎, 王党朝, 梅策香, 牛超英, 王伟, 戴斌, 肖国青. 类钴氙离子入射Ni表面激发的红外光谱线和X射线谱. 物理学报, 2009, 58(10): 6920-6925. doi: 10.7498/aps.58.6920
    [11] 陈子伦, 周 朴, 许晓军, 侯 静, 姜宗福. 谱线和耦合系数对光纤激光器相互注入锁定的影响. 物理学报, 2008, 57(6): 3588-3592. doi: 10.7498/aps.57.3588
    [12] 郑瑞伦, 吴 强. CdS/HgS/CdS球状纳米系统高能级斯塔克线度效应. 物理学报, 2008, 57(12): 7841-7847. doi: 10.7498/aps.57.7841
    [13] 袁先漳, 裴慧元, 陆卫, 李宁, 史国良, 方家熊, 沈学础. Zn0.04Cd0.96Te中深能级的红外光电导谱研究. 物理学报, 2001, 50(4): 775-778. doi: 10.7498/aps.50.775
    [14] 杨传路, 朱正和. Ar-HCl转动跃迁光谱线压力加宽截面的理论计算. 物理学报, 1999, 48(10): 1852-1857. doi: 10.7498/aps.48.1852
    [15] 沈学础, 褚君浩. CdxHg1-xTe混晶声子谱的远红外光谱研究. 物理学报, 1984, 33(6): 729-737. doi: 10.7498/aps.33.729
    [16] 甘子钊, 杨国桢. 关于激子谱线近傍的三阶非线性光学系数. 物理学报, 1982, 31(4): 503-509. doi: 10.7498/aps.31.503
    [17] 郑健生. 可见光到近红外光谱范围内微小辐射物理量的测量. 物理学报, 1980, 29(3): 286-295. doi: 10.7498/aps.29.286
    [18] 潘振华, 钱人元. 聚酰胺6的红外光谱. 物理学报, 1962, 18(3): 159-164. doi: 10.7498/aps.18.159
    [19] 郑吉母, 蒋孟闵. 落雪山宇宙线强度的气压系数. 物理学报, 1960, 16(3): 175-176. doi: 10.7498/aps.16.175
    [20] 何怡贞, 徐升美. 有自吸收现象时谱线强度与物质浓度的关系. 物理学报, 1958, 14(1): 54-63. doi: 10.7498/aps.14.54
计量
  • 文章访问数:  6155
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-15
  • 修回日期:  2021-03-22
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-08-20

/

返回文章
返回