It is theoretically demonstrated that the omnidirectional reflection band in one-dimensional disordered photonic crystals (1D DPCs) can have a width as broad as that in one-dimensional periodic photonic crystals (1D PPCs) with the same layer number. In the band gap, the electric field intensity distributions in a 1D DPC are almost the same as in 1D PPCs. However, near the band edges, the electric field intensity distribution in the 1D PPC is symmetric, remarkably different from the asymmetric field patterns in the 1D DPCs that are designable and controllable. This characteristic in the 1D DPCs should open a new way to design photonic-crystal-based devices.