-
对于无穷深势阱中自旋为0(满足Klein-Gordon方程)和自旋为1/2(满足Dirac方程)的相对论粒子, 分别计算了坐标、动量以及速度算符的矩阵元. 在大量子数极限下, 这些矩阵元给出相应的经典物理量(这里是狭义相对论中的有关量), 并且满足正确的经典关系. 从而表明, Heisenberg对应原理对这样的相对论体系也适用.
-
关键词:
- 无穷深势阱 /
- Klein-Gordon方程 /
- Dirac方程 /
- Heisenberg对应原理
For relativistic particles with spin-0 (satisfying the Klein-Gordon equation) and spin-1/2 (satisfying the Dirac equation) in infinitely deep potential well, matrix elements for the coordinate, momentum and the velocity operators are calculated. In the limit of large quantum numbers, these matrix elements give the corresponding classical quantities (nowbeing related quantities in special relativity) and satisfy exact classical relations. These results show that the Heisenberg correspondence principle is applicable to such relativistic systems.-
Keywords:
- infinitely deep potential well /
- Klein-Gordon equation /
- Dirac equation /
- Heisenberg correspondence principle
计量
- 文章访问数: 9811
- PDF下载量: 979
- 被引次数: 0