搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相对运动动力学系统Nielsen方程的Lie对称性与Hojman守恒量

解银丽 贾利群 杨新芳

引用本文:
Citation:

相对运动动力学系统Nielsen方程的Lie对称性与Hojman守恒量

解银丽, 贾利群, 杨新芳
cstr: 32037.14.aps.60.030201

Lie symmetry and Hojman conserved quantity of Nielsen equation in a dynamical system of the relative motion

Xie Yin-Li, Jia Li-Qun, Yang Xin-Fang
cstr: 32037.14.aps.60.030201
PDF
导出引用
在线预览
  • 研究相对运动动力学系统Nielsen方程的Lie对称性和Lie对称性直接导致的Hojman守恒量.在群的无限小变换下,给出相对运动动力学系统Nielsen方程Lie对称性的定义和判据;得到相对运动动力学系统Nielsen方程Lie对称性的确定方程以及Lie对称性直接导致的Hojman守恒量的表达式.举例说明结果的应用.
    Lie symmetry and Hojman conserved quantity for Nielsen equations in a dynamical system of the relative motion are investigated. The definition and the criterion of Lie symmetry of Nielsen equations in a dynamical system of the relative motion under the infinitesimal transformations of groups are given. The expressions of the determining equation of Lie symmetry of Nielsen equations and Hojman conserved quantity deduced directly from Lie symmetry in a dynamical system of the relative motion are obtained. An example is given to illustrate the application of the results.
    • 基金项目: 国家自然科学基金(批准号:10572021)和江南大学预研基金(批准号:2008LYY011)资助的课题.
    [1]

    Noether A E 1918 Nachr. Akad. Wiss. Gttingen. Math. Phys. KI II 235

    [2]

    Lee T D 1983 Phys.Lett.B 122 217

    [3]

    Hojman S A1992 J.Phys.A:Math.Gen. 25 L291

    [4]

    Lutzky M 1995 J. Phys.A:Math.Gen. 28 L637

    [5]

    Bokhari A H,Kashif A R 1996 J. Math. Phys. 37 3496

    [6]

    Mei F X,Liu D,Luo Y 1991 Advanced Analytical Mechanics (Beijing:Bengjing Institute of Technology Press)(in Chinese)[梅凤翔、刘 端、罗 勇 1991 高等分析力学(北京:北京理工大学出版社)]

    [7]

    Mei F X 1999 Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems(Beijing:Science Press) (in Chinese)[梅凤翔 1999李群和李代数对约束力学系统的应用(北京:科学出版社)]

    [8]

    Fu J L,Wang X M 2000 Acta. Phys. Sin. 49 1023 (in Chinese) [傅景礼、王新民2000 物理学报 49 1023]

    [9]

    Fang J H, Zhao S Q 2002 Chin. Phys. 11 445

    [10]

    Zhang Y 2003 Acta Phys.Sin. 52 1832 (in Chinese)[张 毅 2003 物理学报 52 1832] [11] Luo S K 2004 Acta Phys.Sin. 53 5(in Chinese)[罗绍凯 2004 物理学报 53 5]

    [11]

    Mei F X 2004 Symmetries and Conserved Quantities of Constranined Mechanical Systems (Beijing:Beijing Institute of Technology Press) (in Chinese)[梅凤翔 2004约束力学系统的对称性和守恒量(北京:北京理工大学出版社)]

    [12]

    Xu X J,Mei F X,Zhang Y F 2006 Chin. Phys. 15 19

    [13]

    Mei F X,Wu H B,Zhang Y F.2006 Chin. Phys. 15 1932

    [14]

    Xia L L,Li Y C,Wang J,Hou Q B 2006 Acta Phys.Sin. 55 4995(in Chinese)[夏丽莉、李元成、王 静、后其宝2006 物理学报 55 4995]

    [15]

    Shang M,Guo Y X,Mei F X 2007 Chin.Phys . 16 292

    [16]

    Shi S Y, Fu J L, Chen L Q 2007 Acta. Phys. Sim. 56 3060 (in Chinese) [施沈阳、傅景礼、陈立群 2007 物理学报 56 3060]

    [17]

    Ge W K 2008 Acta Phys.Sin. 57 6714 (in Chinese)[葛伟宽2008 物理学报 57 6714]

    [18]

    Cui J C,Zhang Y Y, Jia L Q 2009 Chin.Phys.B 18 1731

  • [1]

    Noether A E 1918 Nachr. Akad. Wiss. Gttingen. Math. Phys. KI II 235

    [2]

    Lee T D 1983 Phys.Lett.B 122 217

    [3]

    Hojman S A1992 J.Phys.A:Math.Gen. 25 L291

    [4]

    Lutzky M 1995 J. Phys.A:Math.Gen. 28 L637

    [5]

    Bokhari A H,Kashif A R 1996 J. Math. Phys. 37 3496

    [6]

    Mei F X,Liu D,Luo Y 1991 Advanced Analytical Mechanics (Beijing:Bengjing Institute of Technology Press)(in Chinese)[梅凤翔、刘 端、罗 勇 1991 高等分析力学(北京:北京理工大学出版社)]

    [7]

    Mei F X 1999 Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems(Beijing:Science Press) (in Chinese)[梅凤翔 1999李群和李代数对约束力学系统的应用(北京:科学出版社)]

    [8]

    Fu J L,Wang X M 2000 Acta. Phys. Sin. 49 1023 (in Chinese) [傅景礼、王新民2000 物理学报 49 1023]

    [9]

    Fang J H, Zhao S Q 2002 Chin. Phys. 11 445

    [10]

    Zhang Y 2003 Acta Phys.Sin. 52 1832 (in Chinese)[张 毅 2003 物理学报 52 1832] [11] Luo S K 2004 Acta Phys.Sin. 53 5(in Chinese)[罗绍凯 2004 物理学报 53 5]

    [11]

    Mei F X 2004 Symmetries and Conserved Quantities of Constranined Mechanical Systems (Beijing:Beijing Institute of Technology Press) (in Chinese)[梅凤翔 2004约束力学系统的对称性和守恒量(北京:北京理工大学出版社)]

    [12]

    Xu X J,Mei F X,Zhang Y F 2006 Chin. Phys. 15 19

    [13]

    Mei F X,Wu H B,Zhang Y F.2006 Chin. Phys. 15 1932

    [14]

    Xia L L,Li Y C,Wang J,Hou Q B 2006 Acta Phys.Sin. 55 4995(in Chinese)[夏丽莉、李元成、王 静、后其宝2006 物理学报 55 4995]

    [15]

    Shang M,Guo Y X,Mei F X 2007 Chin.Phys . 16 292

    [16]

    Shi S Y, Fu J L, Chen L Q 2007 Acta. Phys. Sim. 56 3060 (in Chinese) [施沈阳、傅景礼、陈立群 2007 物理学报 56 3060]

    [17]

    Ge W K 2008 Acta Phys.Sin. 57 6714 (in Chinese)[葛伟宽2008 物理学报 57 6714]

    [18]

    Cui J C,Zhang Y Y, Jia L Q 2009 Chin.Phys.B 18 1731

计量
  • 文章访问数:  12126
  • PDF下载量:  1316
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-05-13
  • 修回日期:  2010-06-04
  • 刊出日期:  2011-03-15

/

返回文章
返回