搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

形变碳纳米管选择通过性的分子动力学研究

徐葵 王青松 谭兵 陈明璇 缪灵 江建军

引用本文:
Citation:

形变碳纳米管选择通过性的分子动力学研究

徐葵, 王青松, 谭兵, 陈明璇, 缪灵, 江建军

Molecular dynamic of selectivity and permeation based on deformed carbon nanotube

Xu Kui, Wang Qing-Song, Tan Bin, Chen Ming-Xuan, Miao Ling, Jiang Jian-Jun
PDF
导出引用
  • 本文采用分子动力学方法, 研究了基团修饰后形变碳纳米管的水分子通过性和离子选择性. 结果表明, 形变碳纳米管的短径与修饰基团的种类、修饰率及修饰位置有关. 不同粗细碳纳米管均存在临界短径, 小于临界短径的形变碳纳米管具有对氯离子和钠离子的选择性, 同时水分子通过速率与本征碳纳米管相比未明显变小. 分析系统平均力势表明, 离子选择性来源于不同短径碳纳米管管口的通过势垒. 对于实际制备中较宽孔径分布的碳纳米管, 可以通过基团修饰等方法调控其短径, 提高其离子选择性.
    Extensive molecular dynamics simulations of water permeation and ion selectivity of the single-walled carbon nanotubes with the radial deformation are presented. The simulated results indicate that there is a close relationship between the minor axis of deformed carbon nanotubes and the variety, density as well as the position of functional groups. The critical minor axis of different diameter carbon nanotubes exists, and the carbon nanotube whose minor axis is less than the critical minor axis owns the selectivity of chlorine and sodium ions. Meanwhile, compared with intrinsic carbon nanotubes, the deformed nanotubes do not obviously reduce the permeation of water. The analysis of the potential of mean force reveals that the selectivity and the permeation of ions come from the pass potential barrier of carbon nanotubes with various minor axises. Furthermore, our observations of modifying functional groups may have significance for controlling the minor axis and improving the selectivity and permeation of ions in real manufacture of some large nanotubes.
    [1]

    Hummer G, Rasiah J C, Nowortya J 2001 Nature 414 188

    [2]

    Kalra A, Garde S, Hummer G 2003 Proc. Natl. Acad. Sci. 100 10175

    [3]

    Kolesnikov A I, Zanotti J M, Loong C K 2004 Phys. Rev. Lett. 93 035503

    [4]

    Cambre S, Schoeters B, Luyckx S, Goovaerts E, Wenseleers W 2010 Phys. Rev. Lett 104 207401

    [5]

    Qin X C, Yuan Q Z, Zhao Y P, Xie S B, Liu Z F 2011 Nano. Lett. 11 2173

    [6]

    Hinds B J, Chopra N, Rantell T, Andrews R, Gavalas V, Bachas L G 2003 Science 303 62

    [7]

    Holt J K, Noy A, Huser T, Eaglesham D, Bakajin O 2004 Nano. Lett. 2 2245

    [8]

    Majumder M, Chopra N, Andrews R, Hinds B J 2005 Nature 438 44

    [9]

    Falk K, Sedlmeier F, Joly L, Netz R R, Bocquet L 2010 Nano. Lett. 10 4067

    [10]

    Joseph S, Aluru N R 2008 Nano. Lett. 8 452458

    [11]

    Jia Y X, Li H L, Wang M, Wu L Y,Hu Y D 2010 Separation and Purification Technology 75 55

    [12]

    Sun Y J, Guo H X 2010 Nano 5 351

    [13]

    Duan W H, Wang Q 2010 Nano 4 2338

    [14]

    Corry B 2008 J. Phys. Chem. B 112 7642

    [15]

    Leung K, Rempe S B 2009 J Compu. Theor Nano. Sci. 6 1948

    [16]

    Yuan Q Z, Zhao Y P 2009 JACS 131 6374

    [17]

    Fornasiero F, Park H G, Holt J K, Stadermann M, Grigoropoulos C P, Noy A, Bakajin O 2008 Pnas 105 17250

    [18]

    Goldsmith J, Martens C C 2010 J. Phys. Chem. Lett. 1 528

    [19]

    Gong X J, Li J C, Xu K, Wang J F, Yang H 2010 J. Am. Chem. Soc 132 1873

    [20]

    Corry B 2011 Energy Environ Sci. 4 751166

    [21]

    Chen Q W, Meng L Y, Li Q K, Wang D, Guo W, Shuai Z G, Jiang L 2011 Small x 1---7

    [22]

    Dimitrakakis G K, Tylianakis E, Froudakis G E 2008 Nano Lett 8 3

    [23]

    Zhu F Q, Tajkhorshid E, Schulten K 2002 Biophys. J. 83 154

    [24]

    Hilder T A, Gordon D, Chung S H 2009 Small 19 2183

    [25]

    Beu T A 2010 J. Chem. Phys. 132 164513

    [26]

    Chen L J, Lu Z Y 2005 J. Chem. Phys. 122 104907

    [27]

    Sun H 1998 J. Phys. Chem. B 102 7338

    [28]

    Chang Y W, Aluru N R 2009 Chemical Physics Lett. 478 185

    [29]

    Alexiadis A, Kassinos S 2008 Mol. Simul. 34 671

    [30]

    Thomas J A, McGaughy A J H 2009 Phys. Rev. Lett. 102 184502

    [31]

    Liu H M, Murad S 2006 J. Chem. Phys. 125 084713

    [32]

    Park J H, Sinnott S B Aluru N R 2006 Nanotechnology 17 895

  • [1]

    Hummer G, Rasiah J C, Nowortya J 2001 Nature 414 188

    [2]

    Kalra A, Garde S, Hummer G 2003 Proc. Natl. Acad. Sci. 100 10175

    [3]

    Kolesnikov A I, Zanotti J M, Loong C K 2004 Phys. Rev. Lett. 93 035503

    [4]

    Cambre S, Schoeters B, Luyckx S, Goovaerts E, Wenseleers W 2010 Phys. Rev. Lett 104 207401

    [5]

    Qin X C, Yuan Q Z, Zhao Y P, Xie S B, Liu Z F 2011 Nano. Lett. 11 2173

    [6]

    Hinds B J, Chopra N, Rantell T, Andrews R, Gavalas V, Bachas L G 2003 Science 303 62

    [7]

    Holt J K, Noy A, Huser T, Eaglesham D, Bakajin O 2004 Nano. Lett. 2 2245

    [8]

    Majumder M, Chopra N, Andrews R, Hinds B J 2005 Nature 438 44

    [9]

    Falk K, Sedlmeier F, Joly L, Netz R R, Bocquet L 2010 Nano. Lett. 10 4067

    [10]

    Joseph S, Aluru N R 2008 Nano. Lett. 8 452458

    [11]

    Jia Y X, Li H L, Wang M, Wu L Y,Hu Y D 2010 Separation and Purification Technology 75 55

    [12]

    Sun Y J, Guo H X 2010 Nano 5 351

    [13]

    Duan W H, Wang Q 2010 Nano 4 2338

    [14]

    Corry B 2008 J. Phys. Chem. B 112 7642

    [15]

    Leung K, Rempe S B 2009 J Compu. Theor Nano. Sci. 6 1948

    [16]

    Yuan Q Z, Zhao Y P 2009 JACS 131 6374

    [17]

    Fornasiero F, Park H G, Holt J K, Stadermann M, Grigoropoulos C P, Noy A, Bakajin O 2008 Pnas 105 17250

    [18]

    Goldsmith J, Martens C C 2010 J. Phys. Chem. Lett. 1 528

    [19]

    Gong X J, Li J C, Xu K, Wang J F, Yang H 2010 J. Am. Chem. Soc 132 1873

    [20]

    Corry B 2011 Energy Environ Sci. 4 751166

    [21]

    Chen Q W, Meng L Y, Li Q K, Wang D, Guo W, Shuai Z G, Jiang L 2011 Small x 1---7

    [22]

    Dimitrakakis G K, Tylianakis E, Froudakis G E 2008 Nano Lett 8 3

    [23]

    Zhu F Q, Tajkhorshid E, Schulten K 2002 Biophys. J. 83 154

    [24]

    Hilder T A, Gordon D, Chung S H 2009 Small 19 2183

    [25]

    Beu T A 2010 J. Chem. Phys. 132 164513

    [26]

    Chen L J, Lu Z Y 2005 J. Chem. Phys. 122 104907

    [27]

    Sun H 1998 J. Phys. Chem. B 102 7338

    [28]

    Chang Y W, Aluru N R 2009 Chemical Physics Lett. 478 185

    [29]

    Alexiadis A, Kassinos S 2008 Mol. Simul. 34 671

    [30]

    Thomas J A, McGaughy A J H 2009 Phys. Rev. Lett. 102 184502

    [31]

    Liu H M, Murad S 2006 J. Chem. Phys. 125 084713

    [32]

    Park J H, Sinnott S B Aluru N R 2006 Nanotechnology 17 895

计量
  • 文章访问数:  4928
  • PDF下载量:  702
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-08-10
  • 修回日期:  2012-05-10
  • 刊出日期:  2012-05-05

形变碳纳米管选择通过性的分子动力学研究

  • 1. 华中科技大学电子科学与技术系, 武汉 430074

摘要: 本文采用分子动力学方法, 研究了基团修饰后形变碳纳米管的水分子通过性和离子选择性. 结果表明, 形变碳纳米管的短径与修饰基团的种类、修饰率及修饰位置有关. 不同粗细碳纳米管均存在临界短径, 小于临界短径的形变碳纳米管具有对氯离子和钠离子的选择性, 同时水分子通过速率与本征碳纳米管相比未明显变小. 分析系统平均力势表明, 离子选择性来源于不同短径碳纳米管管口的通过势垒. 对于实际制备中较宽孔径分布的碳纳米管, 可以通过基团修饰等方法调控其短径, 提高其离子选择性.

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回