搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用光核反应对激光等离子体中超热电子温度诊断的理论研究

赵家瑞 于全芝 梁天骄 陈黎明 李玉同 国承山

引用本文:
Citation:

利用光核反应对激光等离子体中超热电子温度诊断的理论研究

赵家瑞, 于全芝, 梁天骄, 陈黎明, 李玉同, 国承山

Temperature diagnostic using photonuclear reactions for hot electrons in laserplasma interactions

Zhao Jia-Rui, Yu Quan-Zhi, Liang Tian-Jiao, Chen Li-Ming, Li Yu-Tong, Guo Cheng-Shan
PDF
导出引用
  • 超短超强激光与等离子体相互作用可以产生高能的超热电子, 利用光核反应的方法可以对这部分超热电子的温度进行诊断. 本文通过粒子输运程序(MCNP), 模拟了超热电子通过轫致辐射产生γ 光子, γ 光子再分别与63Cu, 107Ag, 12C等活化材料发生光核反应的物理模型, 并根据核素的活化截面数据, 计算了不同活化片的放射性活度, 得到了11C/62Cu, 11C/106Ag活度比与电子温度关系曲线, 采用理论模拟的方法实现了激光等离子体产生的超热电子的温度诊断.
    The temperature of hot electrons produced in ultra-short ultra-intense laser-plasma interactions could be measured by photonuclear diagnostic method. In this paper, the process of bremsstrahlung gamma photons generated by hot electrons interacting separately with 63Cu, 107Ag, and 12C, were simulated using the Monte Carlo N-particle transport code (MCNP). According to the different cross-sections, the activities of different samples were calculated. The activity ratios for 11C/62Cu and11C/106Ag were achieved at different electron temperatures. This method can realize the temperature diagnostic of hot electrons in laser-plasma interactions.
    • 基金项目: 国家自然科学基金(批准号: 11075203, 10925421, 10974249)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11075203, 60878014, 10974249).
    [1]

    Strickland D, Mourou G 1985 Opt. Commun. 56 219

    [2]

    Bahk S W, Rousseau P, Planchon T, Chvykov V, Kalintchenko G, Maksimchuk A, Mourou G, Yanovsky V 2004 Opt. Lett. 29 2837

    [3]

    Tabak M, Hammer J , Glinsky M E, Kruer W L, Wilks S C, Woodworth J, Campbell E M, Perry M D, Mason R J 1994 Phys. Plasmas 1 1626

    [4]

    Zhang L, Chen L M, Yuan D W, Yan W C, Wang Z H, Liu C, Shen Z W, Faenov A, Pikuz T, Skobelev I, Gasilov V, Boldarev A, Mao J Y, Li Y T, Dong Q L, Lu X, Ma J L, Wang W M, Sheng Z M, Zhang J 2011 Opt. Express 19 25812

    [5]

    Geddes C G R, Toth C, Tilborg J V, Esarey E, Schroeder C B, Bruhwiler D, Nieter C, Cary J, Leemans W P 2004 Nature 431 538k

    [6]

    Zhang L , Chen L M, Wang W M, Yan W C, Yuan D W, Mao J Y, Wang Z H, Liu C, Shen Z W, Faenov A, Pikuz T, Li D Z, Li Y T, Dong Q L, Lu X, Ma J L, Wei Z Y, Sheng Z M, Zhang J 2012 Appl. Phys. Lett. 100 014104

    [7]

    Chen L M, Zhang J , Li Y T, Teng H, Liang T G, Sheng Z M, Dong Q L, Zhao L Z, Wei Z Y, Tang X W 2001 Phys. Rev. Lett. 87 225001

    [8]

    Mao J Y, Chen L M, Ge X L, Zhang L, Yan W C, Li D Z, Liao G Q, Ma J L, Huang K, Li Y T, Lu X, Dong Q L, Wei Z Y, Sheng Z M, Zhang J 2012 Phys. Rev. E 85 025401

    [9]

    Li Y T, Zhang J, Sheng Z M, Zheng J, Chen Z L, Kodama R, Matsuok T, Tamp M, Tanak K A, Tsutsum T, Yabuuch T 2004 Phys. Rev. E 69 36405

    [10]

    Dong K G, Gu Y Q, Zhu B, Wu Y C, Cao L F, He Y L, Liu H J, Hong W, Zhou W M, Zhao Z Q, Jiao C Y, Wen X L, Zhang B H, Wang X F 2010 Acta Phys. Sin. 59 8733 (in Chinese) [董克功, 谷渝秋, 朱斌, 吴玉迟, 曹磊峰, 何颖玲, 刘红杰, 洪伟, 周维民, 赵宗清, 焦春晔, 温贤伦, 张保汉, 王晓方 2010 物理学报 59 8733]

    [11]

    Boyer K, Luk T S, Rhodes C K 1988 Phys. Rev. Lett. 60 557

    [12]

    Cowa T E, Hunt A W, Phillips T W, Wilks S C, Perry M D, Brown C, Fountain W, Hatchett S, Johnson J, Key M H, Parnell T, Pennington D M, Snavely R A, Takahashi Y 2000 Phys. Rev. Lett. 84 903

    [13]

    Santala M I K, Najmudin Z, Clark E L, Tatarakis M, Krushelnick K, Dangor A E, Malka V. Faure J, Allott R, Clarke R J 2001 Phys. Rev. Lett. 86 7

    [14]

    Spencer I, Ledingham K W D, Singhal R P, McCanny T, McKenna P, Clark E L, Krushelnick K, Zepf M, Beg F N, Tatarakis M, Dangor A E, Norreys P A, Clark R J, Allott R M, Ross R N 2001 Nucl. Instr. and Meth. in Phys. Res. B 183 449

    [15]

    Ledingham K W D, Spencer I, McCanny T, Singhal R P, Santala M I K, Clark E, Watts I, Beg F N, Zepf M, Krushelnick K, Tatarakis M, Dangor A E, Norreys P A, Allott R, Neely D, Clark R J, Machacek A C, Wark J S, Cresswell A J, Sanderson D C W, Magill J 2000 Phys. Rev. Lett. 84 899

    [16]

    Santala M I K, Zepf M, Watts I, Beg F N, Clark E, Tatarakis M, Krushelnick K, Dangor A E 2000 Phys. Rev. Lett. 84 1459

    [17]

    Malka V, Fritzler s, Lefebvre E, Aleonard M M, Burgy F, Chambaret J P, Chemin J F, Krushelnick K, Malka G, Mangles S P D, Najmudin Z, Pittman M, Rousseau J P, Scheurer J N, Walton B, Dangor A E 2002 Science 298 1596

    [18]

    Spencer I, Ledingham K W D, Singhal R P, McCanny T, McKenna P, Clark E L, Krushelnick K, Zepf M, Beg F N, Tatarakis M, Dangor A E, Edwards R D, Sinclair M A, Norreys P A, Allott R M, Clark R J 2002 Rev. Sci. Instrum. 73 3801

    [19]

    Gerbaux M, Gobet F, Aléonard M M, Hannachi F, Malka G, Scheurer J N, Tarisien M, Claverie G, Méot V, Morel P, Faure J, Glinec Y, Guemnie-Tafo A, Malka V, Manclossi M, Santos J J 2008 Rev.Sci. Instrum. 79 023504

    [20]

    Briesmeister J F 2000 MCNP –A General Monte Carlo N-Particle Tansport Code (Radiation Safety Information Computational Center)

    [21]

    Xu M H, Liang T J, Zhang J 2006 Acta Phys. Sin. 55 2357 (in Chinese) [徐妙华, 梁天骄, 张杰 2006 物理学报 55 2357]

    [22]

    Ledingham K W D, McKenna P, Singhal R P 2003 Science 300 1107

    [23]

    Lu X X, Liu R, Jiang L, Wang M, Lin J F, Wen Z W, Wang D L 2007 Chin. JourNucl. Sci. Eng. 27 177 (in Chinese) [鹿心鑫, 刘荣, 蒋励, 王玫, 林菊芳, 温中伟, 王大伦 2007 核科学与工程 27 177]

  • [1]

    Strickland D, Mourou G 1985 Opt. Commun. 56 219

    [2]

    Bahk S W, Rousseau P, Planchon T, Chvykov V, Kalintchenko G, Maksimchuk A, Mourou G, Yanovsky V 2004 Opt. Lett. 29 2837

    [3]

    Tabak M, Hammer J , Glinsky M E, Kruer W L, Wilks S C, Woodworth J, Campbell E M, Perry M D, Mason R J 1994 Phys. Plasmas 1 1626

    [4]

    Zhang L, Chen L M, Yuan D W, Yan W C, Wang Z H, Liu C, Shen Z W, Faenov A, Pikuz T, Skobelev I, Gasilov V, Boldarev A, Mao J Y, Li Y T, Dong Q L, Lu X, Ma J L, Wang W M, Sheng Z M, Zhang J 2011 Opt. Express 19 25812

    [5]

    Geddes C G R, Toth C, Tilborg J V, Esarey E, Schroeder C B, Bruhwiler D, Nieter C, Cary J, Leemans W P 2004 Nature 431 538k

    [6]

    Zhang L , Chen L M, Wang W M, Yan W C, Yuan D W, Mao J Y, Wang Z H, Liu C, Shen Z W, Faenov A, Pikuz T, Li D Z, Li Y T, Dong Q L, Lu X, Ma J L, Wei Z Y, Sheng Z M, Zhang J 2012 Appl. Phys. Lett. 100 014104

    [7]

    Chen L M, Zhang J , Li Y T, Teng H, Liang T G, Sheng Z M, Dong Q L, Zhao L Z, Wei Z Y, Tang X W 2001 Phys. Rev. Lett. 87 225001

    [8]

    Mao J Y, Chen L M, Ge X L, Zhang L, Yan W C, Li D Z, Liao G Q, Ma J L, Huang K, Li Y T, Lu X, Dong Q L, Wei Z Y, Sheng Z M, Zhang J 2012 Phys. Rev. E 85 025401

    [9]

    Li Y T, Zhang J, Sheng Z M, Zheng J, Chen Z L, Kodama R, Matsuok T, Tamp M, Tanak K A, Tsutsum T, Yabuuch T 2004 Phys. Rev. E 69 36405

    [10]

    Dong K G, Gu Y Q, Zhu B, Wu Y C, Cao L F, He Y L, Liu H J, Hong W, Zhou W M, Zhao Z Q, Jiao C Y, Wen X L, Zhang B H, Wang X F 2010 Acta Phys. Sin. 59 8733 (in Chinese) [董克功, 谷渝秋, 朱斌, 吴玉迟, 曹磊峰, 何颖玲, 刘红杰, 洪伟, 周维民, 赵宗清, 焦春晔, 温贤伦, 张保汉, 王晓方 2010 物理学报 59 8733]

    [11]

    Boyer K, Luk T S, Rhodes C K 1988 Phys. Rev. Lett. 60 557

    [12]

    Cowa T E, Hunt A W, Phillips T W, Wilks S C, Perry M D, Brown C, Fountain W, Hatchett S, Johnson J, Key M H, Parnell T, Pennington D M, Snavely R A, Takahashi Y 2000 Phys. Rev. Lett. 84 903

    [13]

    Santala M I K, Najmudin Z, Clark E L, Tatarakis M, Krushelnick K, Dangor A E, Malka V. Faure J, Allott R, Clarke R J 2001 Phys. Rev. Lett. 86 7

    [14]

    Spencer I, Ledingham K W D, Singhal R P, McCanny T, McKenna P, Clark E L, Krushelnick K, Zepf M, Beg F N, Tatarakis M, Dangor A E, Norreys P A, Clark R J, Allott R M, Ross R N 2001 Nucl. Instr. and Meth. in Phys. Res. B 183 449

    [15]

    Ledingham K W D, Spencer I, McCanny T, Singhal R P, Santala M I K, Clark E, Watts I, Beg F N, Zepf M, Krushelnick K, Tatarakis M, Dangor A E, Norreys P A, Allott R, Neely D, Clark R J, Machacek A C, Wark J S, Cresswell A J, Sanderson D C W, Magill J 2000 Phys. Rev. Lett. 84 899

    [16]

    Santala M I K, Zepf M, Watts I, Beg F N, Clark E, Tatarakis M, Krushelnick K, Dangor A E 2000 Phys. Rev. Lett. 84 1459

    [17]

    Malka V, Fritzler s, Lefebvre E, Aleonard M M, Burgy F, Chambaret J P, Chemin J F, Krushelnick K, Malka G, Mangles S P D, Najmudin Z, Pittman M, Rousseau J P, Scheurer J N, Walton B, Dangor A E 2002 Science 298 1596

    [18]

    Spencer I, Ledingham K W D, Singhal R P, McCanny T, McKenna P, Clark E L, Krushelnick K, Zepf M, Beg F N, Tatarakis M, Dangor A E, Edwards R D, Sinclair M A, Norreys P A, Allott R M, Clark R J 2002 Rev. Sci. Instrum. 73 3801

    [19]

    Gerbaux M, Gobet F, Aléonard M M, Hannachi F, Malka G, Scheurer J N, Tarisien M, Claverie G, Méot V, Morel P, Faure J, Glinec Y, Guemnie-Tafo A, Malka V, Manclossi M, Santos J J 2008 Rev.Sci. Instrum. 79 023504

    [20]

    Briesmeister J F 2000 MCNP –A General Monte Carlo N-Particle Tansport Code (Radiation Safety Information Computational Center)

    [21]

    Xu M H, Liang T J, Zhang J 2006 Acta Phys. Sin. 55 2357 (in Chinese) [徐妙华, 梁天骄, 张杰 2006 物理学报 55 2357]

    [22]

    Ledingham K W D, McKenna P, Singhal R P 2003 Science 300 1107

    [23]

    Lu X X, Liu R, Jiang L, Wang M, Lin J F, Wen Z W, Wang D L 2007 Chin. JourNucl. Sci. Eng. 27 177 (in Chinese) [鹿心鑫, 刘荣, 蒋励, 王玫, 林菊芳, 温中伟, 王大伦 2007 核科学与工程 27 177]

  • [1] 余金清, 金晓林, 周维民, 李斌, 谷渝秋. 激光-纳米丝靶相互作用过程中超热电子的加热机理研究. 物理学报, 2012, 61(22): 225202. doi: 10.7498/aps.61.225202
    [2] 赵学峰, 李三伟, 蒋刚, 王传珂, 李志超, 胡峰, 李朝光. 超热电子与金黑腔靶作用产生硬X射线的蒙特卡罗模拟. 物理学报, 2011, 60(7): 075203. doi: 10.7498/aps.60.075203
    [3] 董晓刚, 盛政明, 陈 民, 张 杰. 强激光与固体靶作用产生的表面电子加速和辐射研究. 物理学报, 2008, 57(12): 7423-7429. doi: 10.7498/aps.57.7423
    [4] 王光昶, 郑志坚, 谷渝秋, 温贤伦, 陈 涛, 张 婷, 张建炜. 超热电子输运背向光辐射的实验研究. 物理学报, 2008, 57(8): 5117-5122. doi: 10.7498/aps.57.5117
    [5] 蔡达锋, 谷渝秋, 郑志坚, 周维民, 焦春晔, 温天舒, 淳于书泰. 飞秒激光-金属薄膜靶相互作用中靶前后超热电子能谱的比较. 物理学报, 2007, 56(1): 346-352. doi: 10.7498/aps.56.346
    [6] 谭世杰, 郑 坚. 不同加热机制产生的超热电子的相干渡越辐射谐波研究. 物理学报, 2007, 56(12): 7132-7137. doi: 10.7498/aps.56.7132
    [7] 王光昶, 郑志坚, 谷渝秋, 陈 涛, 张 婷. 利用渡越辐射研究超热电子在固体靶中的输运过程. 物理学报, 2007, 56(2): 982-987. doi: 10.7498/aps.56.982
    [8] 郑志远, 李玉同, 远晓辉, 徐妙华, 梁文锡, 于全芝, 张 翼, 王兆华, 魏志义, 张 杰. 近相对论强度激光与薄膜靶相互作用中靶厚度对超热电子发射方向的影响. 物理学报, 2006, 55(4): 1894-1899. doi: 10.7498/aps.55.1894
    [9] 远晓辉, 李玉同, 徐妙华, 郑志远, 梁文锡, 于全芝, 张 翼, 王兆华, 令维军, 魏志义, 赵 卫, 张 杰. 激光入射角对靶面方向超热电子发射的影响. 物理学报, 2006, 55(11): 5899-5904. doi: 10.7498/aps.55.5899
    [10] 李 昆, 李玉同, 张 军, 远晓辉, 徐妙华, 王兆华, 张 杰. 不同偏振态下的飞秒激光脉冲与铝靶相互作用中超热电子的产生. 物理学报, 2006, 55(11): 5909-5916. doi: 10.7498/aps.55.5909
    [11] 远晓辉, 李玉同, 徐妙华, 于全芝, 王首钧, 张 杰, 赵 卫, 王光昶, 温贤伦, 焦春晔, 何颖伶, 张双根, 王向贤, 黄文忠, 谷渝秋. 超热电子产生的靶后相干渡越辐射光谱实验研究. 物理学报, 2006, 55(10): 5362-5367. doi: 10.7498/aps.55.5362
    [12] 徐妙华, 梁天骄, 张 杰. 利用韧致辐射诊断激光等离子体相互作用产生的超热电子. 物理学报, 2006, 55(5): 2357-2363. doi: 10.7498/aps.55.2357
    [13] 王光昶, 郑志坚, 杨向东, 谷渝秋, 刘宏杰, 温天舒, 葛芳芳, 焦春晔, 周维民, 张双根, 王向贤. 超短超强激光与固体靶相互作用中背表面光发射的实验研究. 物理学报, 2005, 54(10): 4803-4807. doi: 10.7498/aps.54.4803
    [14] 谷渝秋, 蔡达锋, 郑志坚, 杨向东, 周维民, 焦春晔, 陈 豪, 温天舒, 淳于书泰. 飞秒激光-固体靶相互作用中超热电子能量分布的实验研究. 物理学报, 2005, 54(1): 186-191. doi: 10.7498/aps.54.186
    [15] 彭晓昱, 张 杰, 金 展, 梁天骄, 仲佳勇, 武慧春, 刘运全, 王兆华, 陈正林, 盛政明, 李玉同, 魏志义. 超短脉冲激光与乙醇微滴相互作用中超热电子的双叶状角分布. 物理学报, 2004, 53(8): 2625-2632. doi: 10.7498/aps.53.2625
    [16] 张军, 张杰, 陈清, 彭练矛, 苍宇, 王怀斌, 仲佳勇. 利用飞秒激光等离子体产生的超热电子进行衍射实验的可行性研究. 物理学报, 2002, 51(8): 1764-1767. doi: 10.7498/aps.51.1764
    [17] 祁兰英, 陈家斌, 蒋小华, 刘慎业, 郑志坚, 张保汉, 丁永坤, 李朝光, 王大海, 朱森昌, 张家泰. “神光Ⅱ”首轮基频光驱动内爆实验超热电子诊断. 物理学报, 2002, 51(9): 2068-2073. doi: 10.7498/aps.51.2068
    [18] 祁兰英, 蒋小华, 陈家斌, 刘慎业, 郑志坚, 张保汉, 丁永坤, 李朝光, 王大海, 朱森昌, 张家泰. “神光Ⅱ”基频光黑腔靶实验超热电子诊断. 物理学报, 2002, 51(9): 2063-2067. doi: 10.7498/aps.51.2063
    [19] 陈正林, 张杰. 对超热电子诱生的磁场分布的估算. 物理学报, 2001, 50(4): 735-740. doi: 10.7498/aps.50.735
    [20] 陈正林, 张 杰. 对超热电子诱生的磁场分布的估算. 物理学报, 2000, 49(11): 2180-2185. doi: 10.7498/aps.49.2180
计量
  • 文章访问数:  3199
  • PDF下载量:  474
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-07-05
  • 修回日期:  2012-12-06
  • 刊出日期:  2013-04-05

利用光核反应对激光等离子体中超热电子温度诊断的理论研究

  • 1. 山东师范大学物理与电子科学学院, 济南 250014;
  • 2. 中国科学院物理研究所北京凝聚态物理国家实验室, 光物理重点实验室, 北京 100190
    基金项目: 国家自然科学基金(批准号: 11075203, 10925421, 10974249)资助的课题.

摘要: 超短超强激光与等离子体相互作用可以产生高能的超热电子, 利用光核反应的方法可以对这部分超热电子的温度进行诊断. 本文通过粒子输运程序(MCNP), 模拟了超热电子通过轫致辐射产生γ 光子, γ 光子再分别与63Cu, 107Ag, 12C等活化材料发生光核反应的物理模型, 并根据核素的活化截面数据, 计算了不同活化片的放射性活度, 得到了11C/62Cu, 11C/106Ag活度比与电子温度关系曲线, 采用理论模拟的方法实现了激光等离子体产生的超热电子的温度诊断.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回