搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无源超高频射频识别系统路径损耗研究

佐磊 何怡刚 李兵 朱彦卿 方葛丰

引用本文:
Citation:

无源超高频射频识别系统路径损耗研究

佐磊, 何怡刚, 李兵, 朱彦卿, 方葛丰

Analysis and measurments of path loss effects for ultra high frequency radio-frequency identification in real environments

Zuo Lei, He Yi-Gang, Li Bing, Zhu Yan-Qing, Fang Ge-Feng
PDF
导出引用
  • 基于射频识别技术原理及Friis传输方程, 导出了自由空间下无源超高频射频识别(RFID) 系统路径损耗表达式. 结合菲涅耳区理论, 分析了菲涅耳余隙及阅读器天线至标签间距两因变量条件下 第一菲涅耳区受阻隔对RFID系统路径损耗的影响, 并提出了双斜率对数距离路径损耗模型. 在开阔室内环境下, 测试了菲涅耳余隙及阅读器天线至标签间距变化时的系统路径损耗. 测试结果表明: 菲涅耳余隙大于第一菲涅耳区半径1.5倍时, 刃形障碍物对系统路径损耗影响较小; 相比传统对数距离路径损耗模型, 双斜率模型标准差减小10%.
    Based on the principles of radio-frequency identification (RFID) technology and Friis propagation equation, the path loss expression of ultra high frequency (UHF) RFID in free space is provided. The Fresnel clearance and horizontal interval between reader antenna and tag are employed as dependent variables, and then the obstructing effect of the first Fresnel zone on path loss is discussed. By the methods of linear regression and minimum mean-square error, a dual-slope Logarithm distance path losses model is proposed. The path losses of UHF RFID under different parameters are measured in open indoor environment. The measurement results indicate that RFID system experiences less fading when the Fresnel clearance is 1.5 times higher than the first Fresnel radius. The standard deviation of the proposed model with two slopes reduces ten percent or more compared with that of traditional logarithm distance path loss model.
    • 基金项目: 国家杰出青年基金(批准号: 50925727);国家自然科学基金(批准号: 60876022);国家自然科学基金青年科学基金(批准号: 51107034);国防预研重大项目(批准号: C1120110004)和湖南省教育厅科学研究项目(批准号: 11C0479)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation for Distinguished Young Scholars of China (Grant No. 50925727), the National Natural Science Foundation of China (Grant No. 60876022), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51107034), the National Defense Advanced Research Project, China (Grant No. C1120110004), and the Research Foundation of Education Bureau of Hunan Province, China (Grant No. 11C0479).
    [1]

    Ruiz A R J, Granja F S, Honorato J C P, Rosas J G 2012 Proc. IEEE Trans. Instrum. Meas. 61 178

    [2]

    Li B, He Y G, Hou Z G, She K, Zuo L 2011 Acta Phys. Sin. 60 4202 (in Chinese) [李兵, 何怡刚, 侯周国, 佘开, 佐磊 2011 物理学报 60 4202]

    [3]

    Hou Z G, He Y G, Li B, She K, Zhu Y Q 2010 Acta Phys. Sin. 59 5606 (in Chinese) [侯周国, 何怡刚, 李兵, 佘开, 朱彦卿 2010 物理学报 59 5606]

    [4]

    Nikitin P V, Rao K 2009 IEEE International Conference on RFID Orlando FL, USA, April 27-28, 2008 p117

    [5]

    S kai, He Y G, Zuo L, Fang G F 2011 IEEE International Conference on Electric Utility Deregulation and Restructuring and Power Technologies Weihai, China, July 6-9, 2011 p1441

    [6]

    Karthaus U, Fischer M 2003 IEEE J. Solid-State Circuits 38 1602

    [7]

    Lazaro A, Girbau D, Salinas D 2009 Proc. IEEE Trans. Antennas Propag. 57 1241

    [8]

    Wang H G, Pei C X, Pan Q 2009 IEEE International Conference on Wireless Communications, Networking and Mobile Computing Beijing, China, Sept. 24-26, 2009 p1

    [9]

    Nikitin P V, Rao K V S 2009 IEEE Trans. Ind. Electron. 56 2374

    [10]

    Lee W C Y 1998 Mobile Communication Engineering: Theory and Applications (2nd Ed.) (New York: McGraw-Hill) pp140-143

    [11]

    Goldsmith A (Translated by Yang H W, Li W D, Guo W B) 2007 Wireless Communications (Beijing: Posts and Telecom Press) pp33-35 (in Chinese) [哥德史密斯著 (杨鸿文, 李卫东, 郭文彬译) 2007 无线通信(北京: 人民邮电出版社)第33–35页]

    [12]

    Feuerstein M J, Blackard K L, Rappaport T S, Seidel S Y, Xia H H 1994 IEEE Trans. Vehicular Technol. 43 487

    [13]

    Xia H H, Bertoni H L, Maciel L R, Stewart A L, Rowe R 1993 Proc. IEEE Trans. Antennas Propag. 41 1439

  • [1]

    Ruiz A R J, Granja F S, Honorato J C P, Rosas J G 2012 Proc. IEEE Trans. Instrum. Meas. 61 178

    [2]

    Li B, He Y G, Hou Z G, She K, Zuo L 2011 Acta Phys. Sin. 60 4202 (in Chinese) [李兵, 何怡刚, 侯周国, 佘开, 佐磊 2011 物理学报 60 4202]

    [3]

    Hou Z G, He Y G, Li B, She K, Zhu Y Q 2010 Acta Phys. Sin. 59 5606 (in Chinese) [侯周国, 何怡刚, 李兵, 佘开, 朱彦卿 2010 物理学报 59 5606]

    [4]

    Nikitin P V, Rao K 2009 IEEE International Conference on RFID Orlando FL, USA, April 27-28, 2008 p117

    [5]

    S kai, He Y G, Zuo L, Fang G F 2011 IEEE International Conference on Electric Utility Deregulation and Restructuring and Power Technologies Weihai, China, July 6-9, 2011 p1441

    [6]

    Karthaus U, Fischer M 2003 IEEE J. Solid-State Circuits 38 1602

    [7]

    Lazaro A, Girbau D, Salinas D 2009 Proc. IEEE Trans. Antennas Propag. 57 1241

    [8]

    Wang H G, Pei C X, Pan Q 2009 IEEE International Conference on Wireless Communications, Networking and Mobile Computing Beijing, China, Sept. 24-26, 2009 p1

    [9]

    Nikitin P V, Rao K V S 2009 IEEE Trans. Ind. Electron. 56 2374

    [10]

    Lee W C Y 1998 Mobile Communication Engineering: Theory and Applications (2nd Ed.) (New York: McGraw-Hill) pp140-143

    [11]

    Goldsmith A (Translated by Yang H W, Li W D, Guo W B) 2007 Wireless Communications (Beijing: Posts and Telecom Press) pp33-35 (in Chinese) [哥德史密斯著 (杨鸿文, 李卫东, 郭文彬译) 2007 无线通信(北京: 人民邮电出版社)第33–35页]

    [12]

    Feuerstein M J, Blackard K L, Rappaport T S, Seidel S Y, Xia H H 1994 IEEE Trans. Vehicular Technol. 43 487

    [13]

    Xia H H, Bertoni H L, Maciel L R, Stewart A L, Rowe R 1993 Proc. IEEE Trans. Antennas Propag. 41 1439

  • [1] 单明广, 刘翔宇, 庞成, 钟志, 于蕾, 刘彬, 刘磊. 结合线性回归的离轴数字全息去载波相位恢复算法. 物理学报, 2022, 71(4): 044202. doi: 10.7498/aps.71.20211509
    [2] 单明广, 刘翔宇, 庞成, 钟志, 于蕾, 刘彬, 刘磊. 结合线性回归的离轴数字全息去载波相位恢复算法. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211509
    [3] 李雷, 颜涵, 陈湘明. 低损耗材料微波介电性能测试中识别TE01δ模式的新方法. 物理学报, 2020, 69(12): 128401. doi: 10.7498/aps.69.20200275
    [4] 闫丽云, 刘家晟, 张好, 张临杰, 肖连团, 贾锁堂. 基于量子相干效应的无芯射频识别标签的空间散射场测量. 物理学报, 2017, 66(24): 243201. doi: 10.7498/aps.66.243201
    [5] 顾金桃, 盛美萍. 稳态损耗因子的衰减法识别研究. 物理学报, 2015, 64(18): 184301. doi: 10.7498/aps.64.184301
    [6] 邓芳明, 何怡刚, 佐磊, 李兵, 吴可汗. 基于无源超高频射频识别标签的湿度传感器设计. 物理学报, 2014, 63(18): 188402. doi: 10.7498/aps.63.188402
    [7] 孟庆芳, 陈月辉, 冯志全, 王枫林, 陈珊珊. 基于局域相关向量机回归模型的小尺度网络流量的非线性预测. 物理学报, 2013, 62(15): 150509. doi: 10.7498/aps.62.150509
    [8] 庞宇, 彭琦, 林金朝, 周前能, 李国全, 吴玮. 基于分组动态帧时隙的射频识别防碰撞算法. 物理学报, 2013, 62(14): 148401. doi: 10.7498/aps.62.148401
    [9] 佐磊, 何怡刚, 李兵, 朱彦卿, 方葛丰. 标签密集环境下天线互偶效应研究. 物理学报, 2013, 62(4): 044102. doi: 10.7498/aps.62.044102
    [10] 张亚妮. 低损耗低非线性高负色散光子晶体光纤的优化设计. 物理学报, 2012, 61(8): 084213. doi: 10.7498/aps.61.084213
    [11] 佐磊, 何怡刚, 李兵, 朱彦卿, 方葛丰. 无源超高频RFID系统识别区域分析及优化. 物理学报, 2012, 61(24): 244103. doi: 10.7498/aps.61.244103
    [12] 李兵, 何怡刚, 侯周国, 佘开, 佐磊. 无源标签反向散射调制性能的分析和测试. 物理学报, 2011, 60(8): 084202. doi: 10.7498/aps.60.084202
    [13] 侯周国, 何怡刚, 李兵. 基于马尔科夫链的射频识别防碰撞测试. 物理学报, 2011, 60(2): 025211. doi: 10.7498/aps.60.025211
    [14] 王娜, 陈克安. 水下噪声音色属性回归模型及其在目标识别中的应用. 物理学报, 2010, 59(4): 2873-2881. doi: 10.7498/aps.59.2873
    [15] 侯周国, 何怡刚, 李兵, 佘开, 朱彦卿. 基于软件无线电的无源超高频RFID标签性能测试. 物理学报, 2010, 59(8): 5606-5612. doi: 10.7498/aps.59.5606
    [16] 唐志军, 何怡刚. 无源射频识别系统中的雷达截面分析与计算. 物理学报, 2009, 58(7): 5126-5132. doi: 10.7498/aps.58.5126
    [17] 秦卫阳, 王红瑾, 高行山. 非线性恢复力耦合的振动系统广义同步与参数识别. 物理学报, 2008, 57(1): 42-45. doi: 10.7498/aps.57.42
    [18] 左浩毅, 杨经国. 基于气溶胶光学厚度反演大气气溶胶尺度分布. 物理学报, 2007, 56(10): 6132-6136. doi: 10.7498/aps.56.6132
    [19] 张 艳, 文 侨, 张 彬. 部分相干平顶光束在线性增益(损耗)介质中的光谱特性. 物理学报, 2006, 55(9): 4962-4967. doi: 10.7498/aps.55.4962
    [20] 谢文贤, 徐 伟, 雷佑铭, 蔡 力. 随机参激和外激联合作用下非线性动力系统的路径积分解. 物理学报, 2005, 54(3): 1105-1112. doi: 10.7498/aps.54.1105
计量
  • 文章访问数:  3357
  • PDF下载量:  468
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-04
  • 修回日期:  2013-02-06
  • 刊出日期:  2013-07-05

无源超高频射频识别系统路径损耗研究

  • 1. 合肥工业大学电气与自动化工程学院, 合肥 230009;
  • 2. 湖南大学电气与信息工程学院, 长沙 410082;
  • 3. 电子测试技术国防科技重点实验室, 青岛 266555
    基金项目: 国家杰出青年基金(批准号: 50925727);国家自然科学基金(批准号: 60876022);国家自然科学基金青年科学基金(批准号: 51107034);国防预研重大项目(批准号: C1120110004)和湖南省教育厅科学研究项目(批准号: 11C0479)资助的课题.

摘要: 基于射频识别技术原理及Friis传输方程, 导出了自由空间下无源超高频射频识别(RFID) 系统路径损耗表达式. 结合菲涅耳区理论, 分析了菲涅耳余隙及阅读器天线至标签间距两因变量条件下 第一菲涅耳区受阻隔对RFID系统路径损耗的影响, 并提出了双斜率对数距离路径损耗模型. 在开阔室内环境下, 测试了菲涅耳余隙及阅读器天线至标签间距变化时的系统路径损耗. 测试结果表明: 菲涅耳余隙大于第一菲涅耳区半径1.5倍时, 刃形障碍物对系统路径损耗影响较小; 相比传统对数距离路径损耗模型, 双斜率模型标准差减小10%.

English Abstract

参考文献 (13)

目录

    /

    返回文章
    返回