搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

反馈强度对外腔反馈半导体激光器混沌熵源生成的随机数序列性能的影响

杨海波 吴正茂 唐曦 吴加贵 夏光琼

引用本文:
Citation:

反馈强度对外腔反馈半导体激光器混沌熵源生成的随机数序列性能的影响

杨海波, 吴正茂, 唐曦, 吴加贵, 夏光琼

Influence of feedback strength on the characteristics of the random number sequence extracted from an external-cavity feedback semiconductor laser

Yang Hai-Bo, Wu Zheng-Mao, Tang Xi, Wu Jia-Gui, Xia Guang-Qiong
PDF
导出引用
  • 外腔反馈半导体激光器在合适的反馈强度下将呈现混沌态, 其输出的激光混沌信号可作为物理熵源获取物理随机数序列. 着重研究了外腔反馈强度对最后获取的二元码序列的随机性的影响. 数值仿真结果表明, 随着反馈强度的增加, 外腔反馈半导体激光器输出的混沌信号的延时时间特征峰值呈现先逐渐减小再逐渐增大的过程, 而对应的排列熵特征值呈现先增大、后缓慢降低的过程, 即存在一个优化的反馈强度可使输出的混沌信号的延时特征得到有效抑制且复杂度高. 利用NIST Special Publication 800-22软件对基于不同反馈强度下外腔半导体激光器输出的混沌信号所产生的二元码序列的随机性进行了相关测试, 并讨论了反馈强度的大小对测试结果的影响.
    Under proper feedback strength, an external-cavity feedback semiconductor laser can operate at a chaos state, and its chaotic output can be used as a physical entropy source to generate a physical random number sequence. In this paper, we focus on the influence of feedback strength on the randomness of the obtained binary code sequence. The simulation results show that with the increase of feedback strength, the time delay characteristic peak of the chaotic signal from an external-cavity feedback semiconductor laser first decreases and then increases gradually, meanwhile, the permutation entropy characteristic value of chaotic signal first increases and then decreases gradually, namely, there exists an optimized feedback strength for obtaining the chaotic signal with the weakest time delay signature and high complexity. The randomness of binary code sequences, generated by the chaotic signal from the external-cavity feedback semiconductor laser under different feedback strengths, is tested by NIST Special Publication 800-22, and the influence of feedback strength on the test results is also discussed.
    • 基金项目: 国家自然科学基金(批准号: 61178011, 61275116, 61475127, 11474233)、重庆市自然科学基金(批准号: 2012jjB40011)和中央高等学校基本科研业务费专项资金(批准号: XDJK2014C079)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61178011, 61275116, 61475127, 11474233), the Natural Science Foundation of Chongqing City, China (Grant No. 2012jjB40011), and the Fundamental Research Funds for the Central Universities, China (Grant No. XDJK2014C079).
    [1]

    Gallager R G 2008 Principles of Digital Communication (New York: Cambridge University Press) pp199-244

    [2]

    Metropolis N, Ulam S 1949 J. Am. Stat. Assoc. 44 335

    [3]

    Asmussen S, Glynn P W 2007 Stochastic Simulation: Algorithms and Analysis (New York: Springer-Verlag) pp30-65

    [4]

    Stinson D R 2005 Cryptography: Theory and Practice (Ontario: CRC Press) pp423-452

    [5]

    Aaldert C 1991 J. Stat. Phys. 63 883

    [6]

    Holman W T, Connelly J A, Dowlatabadi A B 1997 IEEE Trans. Circuits Syst. Regul. Pap. 44 521

    [7]

    Fairfield R C, Mortenson R L, Coulthart K B 1985 An LSI Random Number Generator (RNG) (Berlin: Springer-Verlag) p203

    [8]

    Kuusela T 1993 J. Nonlinear Sci. 3 445

    [9]

    Qi B, Chi Y M, Lo H K, Qian L 2010 Opt. Lett. 35 312

    [10]

    Guo H, Liu Y, Dang A H, Wei W 2009 Chin. Sci. Bull. 54 3651 (in Chinese) [郭弘, 刘钰, 党安红, 韦韦 2009 科学通报 54 3651]

    [11]

    Ren M, Wu E, Liang Y, Jian Y, Wu G, Zeng H 2011 Phys. Rev. A 83 023820

    [12]

    Zhou Q, Hu Y, Liao X F 2008 Acta Phys. Sin. 57 5413 (in Chinese) [周庆, 胡月, 廖晓峰 2008 物理学报 57 5413]

    [13]

    Wu J G, Wu Z M, Tang X, Lin X D, Deng T, Xia G Q, Feng G Y 2011 IEEE Photon. Technol. Lett. 23 759

    [14]

    Ren X L, Wu Z M, Fan L, Xia G Q 2014 Chin. Sci. Bull. 59 259 (in Chinese) [任小丽, 吴正茂, 樊利, 夏光琼 2014 科学通报 59 259]

    [15]

    Xiang S Y, Pan W, Luo B, Yan L S, Zou X H, Li N Q, Zhang L Y 2012 Opt. Commun. 285 5293

    [16]

    Yan S L 2010 Opt. Commun. 283 3305

    [17]

    Zhang M J, Liu T G, Li P, Wang A B, Zhang J Z, Wang Y C 2011 IEEE Photon. Technol. Lett. 23 1872

    [18]

    Zhong D Z, Wu Z M 2009 Opt. Commun. 282 1631

    [19]

    Xie Y Y, Wu Z M, Deng T, Tang X, Fan L, Xia G Q 2013 IEEE Photon. Technol. Lett. 25 1605

    [20]

    Argyris A, Hamacher M, Chlouverakis K E, Bogris A, Syvridis D 2008 Phys. Rev. Lett. 100 194101

    [21]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimiri S, Davis P 2008 Nat. Photon. 2 728

    [22]

    Reidler I, Aviad Y, Rosenbluh M, Kanter I 2009 Phys. Rev. Lett. 103 024102

    [23]

    Kanter I, Aviad Y, Reidler I, Cohen E, Rosenbluh M 2010 Nat. Photon. 4 58

    [24]

    Li P, Wang Y C, Zhang J Z 2010 Opt. Express 18 20360

    [25]

    Wu J G, Tang X, Wu Z M, Xia G Q, Feng G Y 2012 Laser Phys. 22 1476

    [26]

    Hirano K, Amano K, Uchida A, Naito S, Inoue M, Yoshimiri S, Yoshinura K, Davis P 2009 IEEE J. Quantum Electron. 45 1367

    [27]

    Zhang J B, Zhang J Z, Yang Y B, Liang J S, Wang Y C 2010 Acta Phys. Sin. 59 7679 (in Chinese) [张继兵, 张建忠, 杨毅彪, 梁君生, 王云才 2010 物理学报 59 7679]

    [28]

    Xiao B J, Hou J Y, Zhang J Z, Xue L G, Wang Y C 2012 Acta Phys. Sin. 61 150502 (in Chinese) [萧宝瑾, 侯佳音, 张建忠, 薛路刚, 王云才 2012 物理学报 61 150502]

    [29]

    Zhang J Z, Wang Y C, Xue L G, Hou J Y, Zhang B B, Wang A B, Zhang M J 2012 Appl. Opt. 51 1709

    [30]

    Rukhin A, Rukhin J, Nechvatal J, Smid M, Barker E, Leigh S, Levenson M 2008 NIST Special Publication 800-22 (rev. 1) (Gaithersburg: National Institute of Standards and Technology)

    [31]

    Lang R, Kobayashi K 1980 IEEE J. Quantum Electron. 16 347

    [32]

    Bandt C, Pompe B 2002 Phys. Rev. Lett. 88 174102

    [33]

    Zunino L, Rosso O A, Soriano M C 2011 IEEE J. Sel. Top. Quantum Electron. 17 1250

    [34]

    Soriano M C, Zunino L, Rosso O A 2011 IEEE J. Lightwave Technol. 29 2173

    [35]

    Mikami T, Kanno K, Aoyama K, Uchida A, Ikeguchi T, Harayama T, Sunada S, Arai K, Yoshimura K, Davis P 2012 Phys. Rev. Lett. 85 016211

    [36]

    Rontani D, Locquet A, Sciamanna M, Citrin D S 2007 Opt. Lett. 32 2960

    [37]

    Wu J G, Xia G Q, Tang X, Lin X D, Deng T, Fan L, Wu Z M 2010 Opt. Express 18 6661

    [38]

    Argyris A, Pikasis E, Deligiannidis S, Syvridis D 2012 J. Lightwave Technol. 30 1329

  • [1]

    Gallager R G 2008 Principles of Digital Communication (New York: Cambridge University Press) pp199-244

    [2]

    Metropolis N, Ulam S 1949 J. Am. Stat. Assoc. 44 335

    [3]

    Asmussen S, Glynn P W 2007 Stochastic Simulation: Algorithms and Analysis (New York: Springer-Verlag) pp30-65

    [4]

    Stinson D R 2005 Cryptography: Theory and Practice (Ontario: CRC Press) pp423-452

    [5]

    Aaldert C 1991 J. Stat. Phys. 63 883

    [6]

    Holman W T, Connelly J A, Dowlatabadi A B 1997 IEEE Trans. Circuits Syst. Regul. Pap. 44 521

    [7]

    Fairfield R C, Mortenson R L, Coulthart K B 1985 An LSI Random Number Generator (RNG) (Berlin: Springer-Verlag) p203

    [8]

    Kuusela T 1993 J. Nonlinear Sci. 3 445

    [9]

    Qi B, Chi Y M, Lo H K, Qian L 2010 Opt. Lett. 35 312

    [10]

    Guo H, Liu Y, Dang A H, Wei W 2009 Chin. Sci. Bull. 54 3651 (in Chinese) [郭弘, 刘钰, 党安红, 韦韦 2009 科学通报 54 3651]

    [11]

    Ren M, Wu E, Liang Y, Jian Y, Wu G, Zeng H 2011 Phys. Rev. A 83 023820

    [12]

    Zhou Q, Hu Y, Liao X F 2008 Acta Phys. Sin. 57 5413 (in Chinese) [周庆, 胡月, 廖晓峰 2008 物理学报 57 5413]

    [13]

    Wu J G, Wu Z M, Tang X, Lin X D, Deng T, Xia G Q, Feng G Y 2011 IEEE Photon. Technol. Lett. 23 759

    [14]

    Ren X L, Wu Z M, Fan L, Xia G Q 2014 Chin. Sci. Bull. 59 259 (in Chinese) [任小丽, 吴正茂, 樊利, 夏光琼 2014 科学通报 59 259]

    [15]

    Xiang S Y, Pan W, Luo B, Yan L S, Zou X H, Li N Q, Zhang L Y 2012 Opt. Commun. 285 5293

    [16]

    Yan S L 2010 Opt. Commun. 283 3305

    [17]

    Zhang M J, Liu T G, Li P, Wang A B, Zhang J Z, Wang Y C 2011 IEEE Photon. Technol. Lett. 23 1872

    [18]

    Zhong D Z, Wu Z M 2009 Opt. Commun. 282 1631

    [19]

    Xie Y Y, Wu Z M, Deng T, Tang X, Fan L, Xia G Q 2013 IEEE Photon. Technol. Lett. 25 1605

    [20]

    Argyris A, Hamacher M, Chlouverakis K E, Bogris A, Syvridis D 2008 Phys. Rev. Lett. 100 194101

    [21]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimiri S, Davis P 2008 Nat. Photon. 2 728

    [22]

    Reidler I, Aviad Y, Rosenbluh M, Kanter I 2009 Phys. Rev. Lett. 103 024102

    [23]

    Kanter I, Aviad Y, Reidler I, Cohen E, Rosenbluh M 2010 Nat. Photon. 4 58

    [24]

    Li P, Wang Y C, Zhang J Z 2010 Opt. Express 18 20360

    [25]

    Wu J G, Tang X, Wu Z M, Xia G Q, Feng G Y 2012 Laser Phys. 22 1476

    [26]

    Hirano K, Amano K, Uchida A, Naito S, Inoue M, Yoshimiri S, Yoshinura K, Davis P 2009 IEEE J. Quantum Electron. 45 1367

    [27]

    Zhang J B, Zhang J Z, Yang Y B, Liang J S, Wang Y C 2010 Acta Phys. Sin. 59 7679 (in Chinese) [张继兵, 张建忠, 杨毅彪, 梁君生, 王云才 2010 物理学报 59 7679]

    [28]

    Xiao B J, Hou J Y, Zhang J Z, Xue L G, Wang Y C 2012 Acta Phys. Sin. 61 150502 (in Chinese) [萧宝瑾, 侯佳音, 张建忠, 薛路刚, 王云才 2012 物理学报 61 150502]

    [29]

    Zhang J Z, Wang Y C, Xue L G, Hou J Y, Zhang B B, Wang A B, Zhang M J 2012 Appl. Opt. 51 1709

    [30]

    Rukhin A, Rukhin J, Nechvatal J, Smid M, Barker E, Leigh S, Levenson M 2008 NIST Special Publication 800-22 (rev. 1) (Gaithersburg: National Institute of Standards and Technology)

    [31]

    Lang R, Kobayashi K 1980 IEEE J. Quantum Electron. 16 347

    [32]

    Bandt C, Pompe B 2002 Phys. Rev. Lett. 88 174102

    [33]

    Zunino L, Rosso O A, Soriano M C 2011 IEEE J. Sel. Top. Quantum Electron. 17 1250

    [34]

    Soriano M C, Zunino L, Rosso O A 2011 IEEE J. Lightwave Technol. 29 2173

    [35]

    Mikami T, Kanno K, Aoyama K, Uchida A, Ikeguchi T, Harayama T, Sunada S, Arai K, Yoshimura K, Davis P 2012 Phys. Rev. Lett. 85 016211

    [36]

    Rontani D, Locquet A, Sciamanna M, Citrin D S 2007 Opt. Lett. 32 2960

    [37]

    Wu J G, Xia G Q, Tang X, Lin X D, Deng T, Fan L, Wu Z M 2010 Opt. Express 18 6661

    [38]

    Argyris A, Pikasis E, Deligiannidis S, Syvridis D 2012 J. Lightwave Technol. 30 1329

  • [1] 吴佳辰, 宋峥, 谢溢锋, 周心雨, 周沛, 穆鹏华, 李念强. 基于激光器阵列后处理的混沌熵源获取高品质随机数. 物理学报, 2021, 70(10): 104205. doi: 10.7498/aps.70.20202034
    [2] 花飞, 方捻, 王陆唐. 半导体激光器储备池计算系统的工作点选取方法. 物理学报, 2019, 68(22): 224205. doi: 10.7498/aps.68.20191039
    [3] 韩韬, 刘香莲, 李璞, 郭晓敏, 郭龑强, 王云才. 线宽增强因子对光反馈半导体激光器混沌信号生成随机数性能的影响. 物理学报, 2017, 66(12): 124203. doi: 10.7498/aps.66.124203
    [4] 李璞, 江镭, 孙媛媛, 张建国, 王云才. 面向全光物理随机数发生器的混沌实时光采样研究. 物理学报, 2015, 64(23): 230502. doi: 10.7498/aps.64.230502
    [5] 梁君生, 武媛, 王安帮, 王云才. 利用频谱仪提取双反馈混沌半导体激光器的外腔长度密钥. 物理学报, 2012, 61(3): 034211. doi: 10.7498/aps.61.034211
    [6] 张继兵, 张建忠, 杨毅彪, 梁君生, 王云才. 外腔半导体激光器随机数熵源的腔长分析. 物理学报, 2010, 59(11): 7679-7685. doi: 10.7498/aps.59.7679
    [7] 赵严峰. 双反馈半导体激光器的混沌特性研究. 物理学报, 2009, 58(9): 6058-6062. doi: 10.7498/aps.58.6058
    [8] 郭东明, 杨玲珍, 王安帮, 张秀娟, 王云才. 反馈强度调制增强混沌光通信的保密性. 物理学报, 2009, 58(12): 8275-8280. doi: 10.7498/aps.58.8275
    [9] 周 庆, 胡 月, 廖晓峰. 基于鼠标轨迹和混沌系统的真随机数产生器研究. 物理学报, 2008, 57(9): 5413-5418. doi: 10.7498/aps.57.5413
    [10] 孔令琴, 王安帮, 王海红, 王云才. 光反馈半导体激光器产生低频起伏与高维混沌信号及其演化过程. 物理学报, 2008, 57(4): 2266-2272. doi: 10.7498/aps.57.2266
    [11] 颜森林. 延时反馈半导体激光器双劈控制混沌方法研究. 物理学报, 2008, 57(5): 2827-2831. doi: 10.7498/aps.57.2827
    [12] 颜森林. 半导体激光器混沌光电延时负反馈控制方法研究. 物理学报, 2008, 57(4): 2100-2106. doi: 10.7498/aps.57.2100
    [13] 颜森林. 外腔延时反馈半导体激光器混沌偏振可调控制方法研究. 物理学报, 2008, 57(11): 6878-6882. doi: 10.7498/aps.57.6878
    [14] 王 蕾, 汪芙平, 王赞基. 一种新型的混沌伪随机数发生器. 物理学报, 2006, 55(8): 3964-3968. doi: 10.7498/aps.55.3964
    [15] 陶朝海, 陆君安. 混沌系统的速度反馈同步. 物理学报, 2005, 54(11): 5058-5061. doi: 10.7498/aps.54.5058
    [16] 盛利元, 曹莉凌, 孙克辉, 闻 姜. 基于TD-ERCS混沌系统的伪随机数发生器及其统计特性分析. 物理学报, 2005, 54(9): 4031-4037. doi: 10.7498/aps.54.4031
    [17] 黄良玉, 罗晓曙, 方锦清, 赵益波, 唐国宁. 用滑模变结构控制方法实现外腔反馈式半导体激光器的混沌控制. 物理学报, 2005, 54(2): 543-549. doi: 10.7498/aps.54.543
    [18] 唐国宁, 罗晓曙. 混沌系统的预测反馈控制. 物理学报, 2004, 53(1): 15-20. doi: 10.7498/aps.53.15
    [19] 伍维根, 古天祥. 混沌系统的非线性反馈跟踪控制. 物理学报, 2000, 49(10): 1922-1925. doi: 10.7498/aps.49.1922
    [20] 李国辉, 周世平, 徐得名, 赖建文. 间隙线性反馈控制混沌. 物理学报, 2000, 49(11): 2123-2128. doi: 10.7498/aps.49.2123
计量
  • 文章访问数:  3104
  • PDF下载量:  353
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-15
  • 修回日期:  2014-10-25
  • 刊出日期:  2015-04-05

反馈强度对外腔反馈半导体激光器混沌熵源生成的随机数序列性能的影响

  • 1. 西南大学物理科学与技术学院, 重庆 400715
    基金项目: 国家自然科学基金(批准号: 61178011, 61275116, 61475127, 11474233)、重庆市自然科学基金(批准号: 2012jjB40011)和中央高等学校基本科研业务费专项资金(批准号: XDJK2014C079)资助的课题.

摘要: 外腔反馈半导体激光器在合适的反馈强度下将呈现混沌态, 其输出的激光混沌信号可作为物理熵源获取物理随机数序列. 着重研究了外腔反馈强度对最后获取的二元码序列的随机性的影响. 数值仿真结果表明, 随着反馈强度的增加, 外腔反馈半导体激光器输出的混沌信号的延时时间特征峰值呈现先逐渐减小再逐渐增大的过程, 而对应的排列熵特征值呈现先增大、后缓慢降低的过程, 即存在一个优化的反馈强度可使输出的混沌信号的延时特征得到有效抑制且复杂度高. 利用NIST Special Publication 800-22软件对基于不同反馈强度下外腔半导体激光器输出的混沌信号所产生的二元码序列的随机性进行了相关测试, 并讨论了反馈强度的大小对测试结果的影响.

English Abstract

参考文献 (38)

目录

    /

    返回文章
    返回