搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非长波极限下二维光子晶体中横电模的等效介质理论

耿滔 王岩 王新 董祥美

引用本文:
Citation:

非长波极限下二维光子晶体中横电模的等效介质理论

耿滔, 王岩, 王新, 董祥美

Effective medium theory of two-dimensional photonic crystal for transverse electric mode beyond the long-wavelength limit

Geng Tao, Wang Yan, Wang Xin, Dong Xiang-Mei
PDF
导出引用
  • 基于Mie散射理论, 推导、建立了适用于非长波极限的二维光子晶体中横电模的等效介质理论. 随后利用该理论探讨了二维光子晶体中横电模的负折射特性和零折射特性, 计算结果与相应的能带结构相符合, 验证了该理论在非长波极限条件下的适用性. 更进一步的是, 使用该理论能得到从能带结构中无法获取的额外信息.
    An effective medium theory of two-dimensional photonic crystal for TE mode beyond the long-wavelength limit has been established based on the Mie scattering theory. Först, the proposed theory has been used to study the negative-refractive-index photonic crystals for TE mode. This theory can be used to calculate the effective indices and the effective impedance, and to predict the position of the band gap. Results agree well with the band structures, especially when the equifrequency surface contours are almost circular. Then the proposed theory is used to study the zero-refractive-index photonic crystals for TE mode. It can be seen a triply-degenerate point at Γ point, forming a Dirac cone in the band structures. It has been called an “accidental-degeneracy-induced Dirac point”, where the effective index is zero and the effective impedance is 1. Results calculated using the proposed theory agree well with the band structures. This means that the theory can be used well beyond the long-wavelength limit. Furthermore, the additional impedance information, which cannot be obtained by band structures, can be derived from the proposed theory.
    • 基金项目: 上海市青年科技启明星计划项目(批准号: 12QA1402300)、国家自然科学基金青年科学基金(批准号: 61008044)、上海市自然科学基金(批准号: 14ZR1428500)和上海市重点学科项目第三期项目(批准号: S30502)资助的课题.
    • Funds: Project supported by the Shanghai Rising-Star Program, China (Grant No. 12QA1402300), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61008044), the Basic Research Program of Shanghai, China (Grant No. 14ZR1428500), and the Shanghai Leading Academic Discipline Project, China (Grant No. S30502).
    [1]

    Jin L, Zhu Q Y, Fu Y Q 2013 Chin. Phys. B 22 094102

    [2]

    Li Y N, Gu P F, Zhang J L, Li M Y, Liu X 2006 Acta Phys. Sin. 55 4918 (in Chinese) [厉以宇, 顾培夫, 张锦龙, 李明宇, 刘旭 2006 物理学报 55 4918]

    [3]

    Huang X, Lai L, Hang Z H, Zheng H, Chan Z T 2011 Nat. Mater. 10 582

    [4]

    Zhao H, Shen Y F, Zhang Z J 2014 Acta Phys. Sin. 63 174204 (in Chinese) [赵浩, 沈义峰, 张中杰 2014 物理学报 63 174204]

    [5]

    Ginzburg P, Fortuño F J R, Wurtz G A, Dickson W, Murphy A, Morgan F, Pollard J R, Iorsh I, Atrashchenko A, Belov P A, Kivshar Y S, Nevet A, Ankonina G, Orenstein M, Zayats A V 2013 Opt. Express 21 14907

    [6]

    Li G J, Kang X L, Li Y P 2007 Acta Phys. Sin. 56 6403 (in Chinese) [李国俊, 康学亮, 李永平 2007 物理学报 56 6403]

    [7]

    Jin L, Zhu Q Y, Fu Y Q, Yu W X 2013 Chin. Phys. B 22 104101

    [8]

    Kabashin A V, Evans P, Pastkovsky S, Hendren W, Wurtz G A, Atkinson R, Pollard R, Podolskiy V A, Zayats A V 2009 Nat. Mater. 8 867

    [9]

    Suchowski H, O’Brien K, Wong Z J, Salandrino A, Yin X, Zhang X 2013 Science 342 1223

    [10]

    Chui S T, Hu L 2002 Phys. Rev. B 65 144407

    [11]

    Sarychev A K, McPhedran R C, Shalaev V M 2001 Phys. Rev. B 64 079904

    [12]

    Koschny T, Economou E N, Smith D R, Vier D C, Soukoulis, C M 2005 Phys. Rev. B 71 245105

    [13]

    Wu Y, Li J, Zhang Z Q, Chan C T 2006 Phys. Rev. B 74 085111

    [14]

    Chern R L, Chen Y T 2009 Phys. Rev. B 80 075118

    [15]

    Jin J, Liu S, Lin Z, Chui S T 2009 Phys. Rev. B 80 115101

    [16]

    Bohren C F, Huffman D R 1983 Absorption and Scattering of Light by Small Particles (Canada: John Wiley & Sons, Inc) p195

    [17]

    Notomi M 2000 Phys. Rev. B 62 10696

    [18]

    Tang Z, Zhang H, Peng R, Ye Y, Shen L, Wen S, Fan D 2006 Phys. Rev. B 73 235103

    [19]

    Geng T, Liu T Y, zhuang S L 2007 Chin. Opt. Lett. 5 361

  • [1]

    Jin L, Zhu Q Y, Fu Y Q 2013 Chin. Phys. B 22 094102

    [2]

    Li Y N, Gu P F, Zhang J L, Li M Y, Liu X 2006 Acta Phys. Sin. 55 4918 (in Chinese) [厉以宇, 顾培夫, 张锦龙, 李明宇, 刘旭 2006 物理学报 55 4918]

    [3]

    Huang X, Lai L, Hang Z H, Zheng H, Chan Z T 2011 Nat. Mater. 10 582

    [4]

    Zhao H, Shen Y F, Zhang Z J 2014 Acta Phys. Sin. 63 174204 (in Chinese) [赵浩, 沈义峰, 张中杰 2014 物理学报 63 174204]

    [5]

    Ginzburg P, Fortuño F J R, Wurtz G A, Dickson W, Murphy A, Morgan F, Pollard J R, Iorsh I, Atrashchenko A, Belov P A, Kivshar Y S, Nevet A, Ankonina G, Orenstein M, Zayats A V 2013 Opt. Express 21 14907

    [6]

    Li G J, Kang X L, Li Y P 2007 Acta Phys. Sin. 56 6403 (in Chinese) [李国俊, 康学亮, 李永平 2007 物理学报 56 6403]

    [7]

    Jin L, Zhu Q Y, Fu Y Q, Yu W X 2013 Chin. Phys. B 22 104101

    [8]

    Kabashin A V, Evans P, Pastkovsky S, Hendren W, Wurtz G A, Atkinson R, Pollard R, Podolskiy V A, Zayats A V 2009 Nat. Mater. 8 867

    [9]

    Suchowski H, O’Brien K, Wong Z J, Salandrino A, Yin X, Zhang X 2013 Science 342 1223

    [10]

    Chui S T, Hu L 2002 Phys. Rev. B 65 144407

    [11]

    Sarychev A K, McPhedran R C, Shalaev V M 2001 Phys. Rev. B 64 079904

    [12]

    Koschny T, Economou E N, Smith D R, Vier D C, Soukoulis, C M 2005 Phys. Rev. B 71 245105

    [13]

    Wu Y, Li J, Zhang Z Q, Chan C T 2006 Phys. Rev. B 74 085111

    [14]

    Chern R L, Chen Y T 2009 Phys. Rev. B 80 075118

    [15]

    Jin J, Liu S, Lin Z, Chui S T 2009 Phys. Rev. B 80 115101

    [16]

    Bohren C F, Huffman D R 1983 Absorption and Scattering of Light by Small Particles (Canada: John Wiley & Sons, Inc) p195

    [17]

    Notomi M 2000 Phys. Rev. B 62 10696

    [18]

    Tang Z, Zhang H, Peng R, Ye Y, Shen L, Wen S, Fan D 2006 Phys. Rev. B 73 235103

    [19]

    Geng T, Liu T Y, zhuang S L 2007 Chin. Opt. Lett. 5 361

  • [1] 吴雨明, 丁霄, 王任, 王秉中. 基于等效介质原理的宽角超材料吸波体的理论分析. 物理学报, 2020, 69(5): 054202. doi: 10.7498/aps.69.20191732
    [2] 林海笑, 俞昕宁, 刘士阳. 基于零折射磁性特异电磁介质的波前调控. 物理学报, 2015, 64(3): 034203. doi: 10.7498/aps.64.034203
    [3] 沈娟娟, 何兴道, 刘彬, 李淑静. 基于太极形介质柱六角光子晶体禁带特性研究. 物理学报, 2013, 62(8): 084213. doi: 10.7498/aps.62.084213
    [4] 童元伟, 田双, 庄松林. 等效折射率为非-1时的亚波长成像. 物理学报, 2011, 60(5): 054201. doi: 10.7498/aps.60.054201
    [5] 章海锋, 刘少斌, 孔祥鲲. TM模式下二维非磁化等离子体光子晶体的禁带调制特性分析. 物理学报, 2011, 60(5): 055209. doi: 10.7498/aps.60.055209
    [6] 章海锋, 刘少斌, 孔祥鲲. 横磁模式下二维非磁化等离子体光子晶体的线缺陷特性研究. 物理学报, 2011, 60(2): 025215. doi: 10.7498/aps.60.025215
    [7] 何正红, 叶志成, 李争光, 崔晴宇, 苏翼凯. 复合周期的介质-液晶光子晶体研究. 物理学报, 2011, 60(3): 034213. doi: 10.7498/aps.60.034213
    [8] 杨毅彪, 王拴锋, 李秀杰, 王云才, 梁伟. 介质柱型二维Triangular格子光子晶体的禁带特性. 物理学报, 2010, 59(7): 5073-5077. doi: 10.7498/aps.59.5073
    [9] 王慧琴, 刘正东. 光子晶体对非晶纳米团簇辐射特性的影响. 物理学报, 2009, 58(3): 1648-1654. doi: 10.7498/aps.58.1648
    [10] 朱永政, 尹计秋, 邱明辉. 非密堆积TiO2空心微球光子晶体的制备与能带分析. 物理学报, 2008, 57(12): 7725-7728. doi: 10.7498/aps.57.7725
    [11] 殷海荣, 宫玉彬, 魏彦玉, 岳玲娜, 路志刚, 巩华荣, 黄民智, 王文祥. 有限开敞介质光子晶体的模式及其带结构分析. 物理学报, 2008, 57(6): 3562-3570. doi: 10.7498/aps.57.3562
    [12] 刘世元, 顾华勇, 张传维, 沈宏伟. 基于修正等效介质理论的微纳深沟槽结构反射率快速算法研究. 物理学报, 2008, 57(9): 5996-6001. doi: 10.7498/aps.57.5996
    [13] 殷海荣, 宫玉彬, 魏彦玉, 路志刚, 巩华荣, 岳玲娜, 黄民智, 王文祥. 非截面二维光子晶体排列矩形波导的全模式分析. 物理学报, 2007, 56(3): 1590-1597. doi: 10.7498/aps.56.1590
    [14] 郝保良, 刘濮鲲, 唐昌建. 二维非正交坐标斜方格金属光子带隙结构. 物理学报, 2006, 55(4): 1862-1867. doi: 10.7498/aps.55.1862
    [15] 许兴胜, 陈弘达, 张道中. 非晶光子晶体中的光子局域化. 物理学报, 2006, 55(12): 6430-6434. doi: 10.7498/aps.55.6430
    [16] 董慧媛, 刘 楣, 吴宗汉, 汪 静, 王振林. 由介质球构成的三维光子晶体能带结构的平面波研究. 物理学报, 2005, 54(7): 3194-3199. doi: 10.7498/aps.54.3194
    [17] 茅惠兵, 杨昌利, 赖宗声. 光子晶体可调谐滤波特性的理论研究. 物理学报, 2004, 53(7): 2201-2205. doi: 10.7498/aps.53.2201
    [18] 刘江涛, 周云松, 王福合, 顾本源. 光子晶体反常色散超窄带滤波理论. 物理学报, 2004, 53(10): 3336-3340. doi: 10.7498/aps.53.3336
    [19] 庄飞, 何赛灵, 何江平, 冯尚申. 大带隙的二维各向异性椭圆介质柱光子晶体. 物理学报, 2002, 51(2): 355-361. doi: 10.7498/aps.51.355
    [20] 沈林放, 何赛灵, 吴良. 等效介质理论在光子晶体平面波展开分析方法中的应用. 物理学报, 2002, 51(5): 1133-1138. doi: 10.7498/aps.51.1133
计量
  • 文章访问数:  3689
  • PDF下载量:  208
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-22
  • 修回日期:  2015-02-04
  • 刊出日期:  2015-08-05

非长波极限下二维光子晶体中横电模的等效介质理论

  • 1. 上海市现代光学系统重点实验室, 教育部光学仪器与系统工程研究中心, 上海理工大学光电信息与计算机工程学院, 上海 200093
    基金项目: 上海市青年科技启明星计划项目(批准号: 12QA1402300)、国家自然科学基金青年科学基金(批准号: 61008044)、上海市自然科学基金(批准号: 14ZR1428500)和上海市重点学科项目第三期项目(批准号: S30502)资助的课题.

摘要: 基于Mie散射理论, 推导、建立了适用于非长波极限的二维光子晶体中横电模的等效介质理论. 随后利用该理论探讨了二维光子晶体中横电模的负折射特性和零折射特性, 计算结果与相应的能带结构相符合, 验证了该理论在非长波极限条件下的适用性. 更进一步的是, 使用该理论能得到从能带结构中无法获取的额外信息.

English Abstract

参考文献 (19)

目录

    /

    返回文章
    返回