搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

颗粒气体团簇行为实验研究

王花 陈琼 王文广 厚美瑛

引用本文:
Citation:

颗粒气体团簇行为实验研究

王花, 陈琼, 王文广, 厚美瑛

Experimental study of clustering behaviors in granular gases

Wang Hua, Chen Qiong, Wang Wen-Guang, Hou Mei-Ying
PDF
导出引用
  • 颗粒体系由于非弹性碰撞和摩擦等内秉的能量耗散特性, 由宏观粒子形成的颗粒气体体系经常会有局部凝聚现象, 这是颗粒气体体系与分子气体体系的最大区别之一. 理解和预测这一现象的发生将有助于人们对远离平衡态体系的复杂现象, 如有序结构、斑图和团簇形成的认知. 这种局部凝聚现象可以类比于分子气体中亚稳分解形成的液滴, 将气液相分离用于解释和寻求局部凝聚现象的此模型得到了分子动力学模拟的校验. 但是实验的校验却由于宏观粒子运动受重力作用的影响难以在实验室中实现. 作为实践十号卫星的前期实验, 本文利用国家微重力实验室落塔装置, 以水平激振装有不同尺寸和数目的颗粒样品, 在短时微重力条件下, 成功观察到颗粒气体团簇的形成; 并将实验结果与颗粒气体类范德瓦耳斯气体分子相分离模型对比, 由形成团簇样品的颗粒数密度条件, 来实验确定了所选颗粒的恢复系数, 得到直径为0.5 mm的钛珠颗粒的恢复系数在0.60.8之间, 直径为1 mm的钛珠颗粒的恢复系数约为0.8, 直径为2.5 mm的钛珠颗粒的恢复系数应大于0.8.
    Granular materials are widely spread in nature and in industry. Owing to the inelastic collisions between particles and frictions among particles, granular systems are dissipative in nature. This intrinsic dissipative nature causes local clustering in granular gas systems. This is a unique phenomenon compared with the molecular gases. Understanding and predicting the condition and parameter values when this phenomenon happens will be helpful for us to gain knowledge of the conditions of clustering or pattern formations in non-equilibrium complex systems. The clustering phenomenon in granular gas is analyzed using phase-separation modeling of van der Waals-like molecules. The results from the model are verified by molecular dynamics numerical simulations. However, due to the influence of the gravity, experimental verification is difficult in laboratory. In this work, we perform an experiment in micro-gravity environment provided by the drop tower of National Microgravity Laboratory Chinese Academy of Science. In the experiment we for the first time observe the phase-separation clustering phenomenon. Comparing the observation condition with the model prediction, we are able to indirectly obtain the restitution coefficients of particles used in the experiment. A model calculation for the spinodal regime under experimental conditions is performed for possible particle restitution coefficients, and a comparison with the experimental observation allows us to justify the values of the restitution coefficients. It is found that the coefficient is larger for bigger particles. For d=2.5mm titanium particles, the restitution coefficient is higher than 0.8; for d=1mm titanium particles, the restitution coefficient is about 0.8, and for d=0.5mm titanium particles, the restitution coefficient is between 0.6 and 0.8. This useful result can be essential for comparing experimental observation with the theoretical and the numerical results, and is crucial to the success in the SJ-10 satellite experiments.
      通信作者: 厚美瑛, mayhou@iphy.ac.cn
    • 基金项目: 中国科学院空间科学战略性先导科技专项(批准号: XDA04020200)、国家自然科学基金(批准号: 11274354, 11474326) 和地震行业科研经费(批准号: 201208011)资助的课题.
      Corresponding author: Hou Mei-Ying, mayhou@iphy.ac.cn
    • Funds: Project supported by the Strategic Priority Research Program-SJ-10 of the Chinese Academy of Sciences (Grant No. XDA04020200), the National Natural Science Foundation of China (Grant Nos. 11274354, 11474326), and the Special Fund for Earthquake Research of China (Grant No. 201208011).
    [1]

    Sun Q C, Wang G Q 2009 Introduction to Granular Material Mechanics (Beijing: Science Press) p73 (in Chinese) [孙其诚, 王光谦 2009 颗粒物质力学导论 (北京: 科学出版社) 第73页]

    [2]

    Jaeger H M, Nagel S R 1996 Rev. Mod. Phys. 68 1259

    [3]

    Campbell C S 1990 Ann. Rev. Fluid Mech. 22 57

    [4]

    Grasselliy Y, Bossis G, Goutallier G 2009 Europhys. Lett. 86 60007

    [5]

    Aranson I S, Tsimring L S 2006 Rev. Mod. Phys. 78 641

    [6]

    Pschel T, Schwager T 2005 Computational Granular Dynamics: Models and Algorithms (Berlin: Springer)

    [7]

    McNamara S, Young W R 1994 Phys. Rev. E 50 28

    [8]

    Argentina M, Clerc M G, Soto R 2002 Phys. Rev. Lett. 89 044301

    [9]

    Cartes C, Clerc M G, Soto R 2004 Phys. Rev. E 70 031302

    [10]

    Khain E, Meerson B 2002 Phys. Rev. E 66 021306

    [11]

    Khain E, Meerson B, Sasorov P V 2004 Phys. Rev. E 70 051310

    [12]

    Livne E, Meerson B, Sasorov P V 2002 Phys. Rev. E 66 050301(R)

    [13]

    Diez-Minguito M, Meerson B 2007 Phys. Rev. E 75 011304

    [14]

    Hou M Y 2008 Chin. J. Space Sci. 28 1 (in Chinese) [厚美瑛 2008 空间科学学报 28 1]

    [15]

    Hou M Y 2008 Physics 37 729 (in Chinese) [厚美瑛 2008 物理 37 729]

    [16]

    Liu R, Li Y C, Hou M Y 2008 Acta Phys. Sin. 57 4660 (in Chinese) [刘锐, 李寅阊, 厚美瑛 2008 物理学报 57 4660]

    [17]

    Liu R, Li Y C, Hou M Y, Meerson B 2007 Phys. Rev. E 75 061304

    [18]

    Hu W R, Zhao J F, Long M et. al. 2014 Microgravity Sci. Technol. 26 159

    [19]

    Qi N M, Zhang W H, Gao J Z, Huo M Y 2011 China Academic Journal Electronic Publishing House 29 95 (in Chinese) [齐乃明, 张文辉, 高九州, 霍明英 2011 中国学术期刊电子出版社 29 95]

    [20]

    Jenkins J T, Richman M W 1985 Arch. Rat. Mech. Anal. 87 355

    [21]

    Wei M, Wan S X, Yao K Z, Xie J C 2007 China Academic Journal Electronic Publishing House 4 1 (in Chinese) [韦明, 万士昕, 姚康庄, 谢京昌 2007 中国学术期刊电子出版社 4 1]

    [22]

    Brey J J, Dufty J W, Kim C S 1998 Phys. Rev. E 58 4638

    [23]

    Carnahan N F, Starling K E 1969 J. Chem. Phys. 51 635

  • [1]

    Sun Q C, Wang G Q 2009 Introduction to Granular Material Mechanics (Beijing: Science Press) p73 (in Chinese) [孙其诚, 王光谦 2009 颗粒物质力学导论 (北京: 科学出版社) 第73页]

    [2]

    Jaeger H M, Nagel S R 1996 Rev. Mod. Phys. 68 1259

    [3]

    Campbell C S 1990 Ann. Rev. Fluid Mech. 22 57

    [4]

    Grasselliy Y, Bossis G, Goutallier G 2009 Europhys. Lett. 86 60007

    [5]

    Aranson I S, Tsimring L S 2006 Rev. Mod. Phys. 78 641

    [6]

    Pschel T, Schwager T 2005 Computational Granular Dynamics: Models and Algorithms (Berlin: Springer)

    [7]

    McNamara S, Young W R 1994 Phys. Rev. E 50 28

    [8]

    Argentina M, Clerc M G, Soto R 2002 Phys. Rev. Lett. 89 044301

    [9]

    Cartes C, Clerc M G, Soto R 2004 Phys. Rev. E 70 031302

    [10]

    Khain E, Meerson B 2002 Phys. Rev. E 66 021306

    [11]

    Khain E, Meerson B, Sasorov P V 2004 Phys. Rev. E 70 051310

    [12]

    Livne E, Meerson B, Sasorov P V 2002 Phys. Rev. E 66 050301(R)

    [13]

    Diez-Minguito M, Meerson B 2007 Phys. Rev. E 75 011304

    [14]

    Hou M Y 2008 Chin. J. Space Sci. 28 1 (in Chinese) [厚美瑛 2008 空间科学学报 28 1]

    [15]

    Hou M Y 2008 Physics 37 729 (in Chinese) [厚美瑛 2008 物理 37 729]

    [16]

    Liu R, Li Y C, Hou M Y 2008 Acta Phys. Sin. 57 4660 (in Chinese) [刘锐, 李寅阊, 厚美瑛 2008 物理学报 57 4660]

    [17]

    Liu R, Li Y C, Hou M Y, Meerson B 2007 Phys. Rev. E 75 061304

    [18]

    Hu W R, Zhao J F, Long M et. al. 2014 Microgravity Sci. Technol. 26 159

    [19]

    Qi N M, Zhang W H, Gao J Z, Huo M Y 2011 China Academic Journal Electronic Publishing House 29 95 (in Chinese) [齐乃明, 张文辉, 高九州, 霍明英 2011 中国学术期刊电子出版社 29 95]

    [20]

    Jenkins J T, Richman M W 1985 Arch. Rat. Mech. Anal. 87 355

    [21]

    Wei M, Wan S X, Yao K Z, Xie J C 2007 China Academic Journal Electronic Publishing House 4 1 (in Chinese) [韦明, 万士昕, 姚康庄, 谢京昌 2007 中国学术期刊电子出版社 4 1]

    [22]

    Brey J J, Dufty J W, Kim C S 1998 Phys. Rev. E 58 4638

    [23]

    Carnahan N F, Starling K E 1969 J. Chem. Phys. 51 635

  • [1] 陈克萍, 吕鹏, 王海鹏. 微重力条件下Cu-Zr共晶合金的液固相变研究. 物理学报, 2017, 66(6): 068101. doi: 10.7498/aps.66.068101
    [2] 周宏伟, 王林伟, 徐升华, 孙祉伟. 微重力条件下与容器连通的毛细管中的毛细流动研究. 物理学报, 2015, 64(12): 124703. doi: 10.7498/aps.64.124703
    [3] 陈延佩, Pierre Evesque, 厚美瑛. 振动驱动颗粒气体体系的局域态本构关系的实验验证. 物理学报, 2013, 62(16): 164503. doi: 10.7498/aps.62.164503
    [4] 徐升华, 周宏伟, 王彩霞, 王林伟, 孙祉伟. 微重力条件下不同截面形状管中毛细流动的实验研究. 物理学报, 2013, 62(13): 134702. doi: 10.7498/aps.62.134702
    [5] 李永强, 张晨辉, 刘玲, 段俐, 康琦. 微重力下圆管毛细流动解析近似解研究. 物理学报, 2013, 62(4): 044701. doi: 10.7498/aps.62.044701
    [6] 韩小静, 王音, 林正喆, 张文献, 庄军, 宁西京. 团簇异构体生长概率的理论预测. 物理学报, 2010, 59(5): 3445-3449. doi: 10.7498/aps.59.3445
    [7] 李寅阊, 张兆部, 涂洪恩, 刘锐, 胡海云, 厚美瑛. 分仓颗粒布居分聚现象的通量模型. 物理学报, 2009, 58(8): 5857-5863. doi: 10.7498/aps.58.5857
    [8] 杨 明, 刘建胜, 蔡 懿, 王文涛, 王 成, 倪国权, 李儒新, 徐至展. 低密度大尺寸团簇形成的诊断研究. 物理学报, 2008, 57(1): 176-180. doi: 10.7498/aps.57.176
    [9] 刘 锐, 李寅阊, 厚美瑛. 三维颗粒气体相分离现象. 物理学报, 2008, 57(8): 4660-4666. doi: 10.7498/aps.57.4660
    [10] 何春龙, 袁 喆, 申旭阳, 许雅歌, 李家明. 价键优选法:二、三周期小团簇的理论研究. 物理学报, 2006, 55(1): 162-170. doi: 10.7498/aps.55.162
    [11] 袁勇波, 刘玉真, 邓开明, 杨金龙. SiN团簇光电子能谱的指认. 物理学报, 2006, 55(9): 4496-4500. doi: 10.7498/aps.55.4496
    [12] 黄德财, 孙 刚, 厚美瑛, 陆坤权. 颗粒速度在颗粒流稀疏流-密集流转变中的作用. 物理学报, 2006, 55(9): 4754-4759. doi: 10.7498/aps.55.4754
    [13] 肖 雪, 李海洋, 罗晓琳, 牛冬梅, 温丽华, 王 宾, 梁 峰, 侯可勇, 张娜珍. CS2团簇增强的激光多价电离现象的质谱研究. 物理学报, 2005, 54(11): 5098-5103. doi: 10.7498/aps.54.5098
    [14] 袁 喆, 何春龙, 王晓路, 刘海涛, 李家明. 团簇的第一原理分子动力学计算研究:价键优选法. 物理学报, 2005, 54(2): 628-635. doi: 10.7498/aps.54.628
    [15] 姚文静, 杨 春, 韩秀君, 陈 民, 魏炳波, 过增元. 微重力条件下Ni-Cu合金的快速枝晶生长研究. 物理学报, 2003, 52(2): 448-453. doi: 10.7498/aps.52.448
    [16] 霍崇儒, 朱振和, 葛培文, 陈冬. 微重力下溶液法晶体生长模型中晶体生长界面稳定性的研究. 物理学报, 2001, 50(3): 377-382. doi: 10.7498/aps.50.377
    [17] 王超英, 翟光杰, 吴兰生, 麦振洪, 李 宏, 张海峰, 丁炳哲. 重力对GaSb熔滴和液/固界面交互作用的影响. 物理学报, 2000, 49(10): 2094-2100. doi: 10.7498/aps.49.2094
    [18] 江国健, 张擎雪, 庄汉锐, 李文兰, 李懋滋. TiC和AlN材料制备中的重力行为研究(Ⅱ). 物理学报, 2000, 49(12): 2498-2501. doi: 10.7498/aps.49.2498
    [19] 江国健, 张擎雪, 庄汉锐, 李文兰, 李懋滋. TiC和AlN材料制备中的重力行为研究(Ⅰ). 物理学报, 2000, 49(12): 2494-2497. doi: 10.7498/aps.49.2494
    [20] 江国健, 张擎雪, 庄汉锐, 李文兰, 李懋滋. TiC和AlN材料制备中的重力行为研究(Ⅲ). 物理学报, 2000, 49(12): 2502-2506. doi: 10.7498/aps.49.2502
计量
  • 文章访问数:  3886
  • PDF下载量:  387
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-29
  • 修回日期:  2015-09-27
  • 刊出日期:  2016-01-05

颗粒气体团簇行为实验研究

  • 1. 北京理工大学物理学院, 北京 100081;
  • 2. 中国科学院物理研究所, 软物质物理重点实验室, 北京凝聚态物理国家实验室, 北京 100190
  • 通信作者: 厚美瑛, mayhou@iphy.ac.cn
    基金项目: 中国科学院空间科学战略性先导科技专项(批准号: XDA04020200)、国家自然科学基金(批准号: 11274354, 11474326) 和地震行业科研经费(批准号: 201208011)资助的课题.

摘要: 颗粒体系由于非弹性碰撞和摩擦等内秉的能量耗散特性, 由宏观粒子形成的颗粒气体体系经常会有局部凝聚现象, 这是颗粒气体体系与分子气体体系的最大区别之一. 理解和预测这一现象的发生将有助于人们对远离平衡态体系的复杂现象, 如有序结构、斑图和团簇形成的认知. 这种局部凝聚现象可以类比于分子气体中亚稳分解形成的液滴, 将气液相分离用于解释和寻求局部凝聚现象的此模型得到了分子动力学模拟的校验. 但是实验的校验却由于宏观粒子运动受重力作用的影响难以在实验室中实现. 作为实践十号卫星的前期实验, 本文利用国家微重力实验室落塔装置, 以水平激振装有不同尺寸和数目的颗粒样品, 在短时微重力条件下, 成功观察到颗粒气体团簇的形成; 并将实验结果与颗粒气体类范德瓦耳斯气体分子相分离模型对比, 由形成团簇样品的颗粒数密度条件, 来实验确定了所选颗粒的恢复系数, 得到直径为0.5 mm的钛珠颗粒的恢复系数在0.60.8之间, 直径为1 mm的钛珠颗粒的恢复系数约为0.8, 直径为2.5 mm的钛珠颗粒的恢复系数应大于0.8.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回