搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

X@C20F20(X=He,Ne,Ar,Kr)几何结构和 电子结构的理论研究

曹青松 邓开明

引用本文:
Citation:

X@C20F20(X=He,Ne,Ar,Kr)几何结构和 电子结构的理论研究

曹青松, 邓开明

Theoretical studies of geometric and electronic structures of X@C20F20 (X=He, Ne, Ar, Kr)

Cao Qing-Song, Deng Kai-Ming
PDF
导出引用
  • 采用密度泛函理论中的广义梯度近似, 对X@C20F20(X=He, Ne, Ar, Kr)几何结构和电子结构进行了计算研究. 几何结构优化发现: 惰性气体原子X内掺到C20F20笼后, 均稳定于碳笼中心, 随着内掺X原子序数的增大, X原子对C20F20笼的影响越来越大. 能隙、内掺能和振动频率计算表明: 内掺X原子使得C20F20的稳定性得到了显著提升, X@C20F20(X=He, Ne, Ar, Kr)都具有良好的稳定性, 并且随着X原子序数的增大, 其稳定性也基本呈现逐渐增强的趋势. 电子结构研究发现: X原子对X@C20F20费米能级附近的占据轨道基本没有贡献, 而对其未占据轨道贡献较大. 计算还发现: 在X@C20F20中, He 和Kr分别从C20F20的C 笼上获得了0.126和0.271个电子, 而Ne和Ar却分别向C笼转移了0.060和0.012个电子. 由此可见: X原子与C原子之间都发生了电荷转移, C笼上的C原子与惰性气体原子X间形成了一定的离子键.
    Several years ago, scientists could already introduced noble gas atoms (He, Ne, Ar, Kr, and Xe) into C60 and higher fullerenes. For the specific cases of He and Ne, the calculations suggested that both atoms are slightly bound inside C60 through simultaneous van der Waals interactions with all 60 carbons. The cavity in dodecahedrane is much smaller than that in C60, but the experimental study found that by bombarding dodecahedrane with fast, neutral helium atoms, He@C20H20 is formed. The structures of C20F20 and C20H20 are similar. Are noble gas atoms also stable in the C20F20? and, are there charges transferring between noble gas atoms and the carbon cage? In this paper, the generalized gradient approximation based on density functional theory is used to analyze the geometric and electronic structures of the endohedral fullerene X@C20F20 (X=He, Ne, Ar, Kr). The geometric optimization shows that the noble gas atoms X are all stable in the center of C20F20 cage. The C-C bond lengths of the X@C20F20 increase with the atomic number X increasing, while the C-F bond length is hardly changed. The inclusion energies of the X@C20F20 (X=He, Ne, Ar, Kr) are 1.359, 3.853, 11.276 and 15.783 eV respectively. These are all positive, which shows that the X@C20F20 have good thermodynamic stabilities, and the thermodynamic stabilities of the X@C20F20 are enhanced with the increase of X atomic number. The energy gaps of the X@C20F20 (X=He, Ne, Ar, Kr) are 5.179, 4.882, 5.874 and 6.205 eV respectively, which are greater than that of C20F20. It indicates that the X@C20F20 have better dynamic stabilities than C20F20. In addition, the vibration frequencies of the X@C20F20 (X=He, Ne, Ar, Kr) are all positive. These indicate that the stability of C20F20 is significantly improved when the X atom is introduced into the cage, and is gradually increasing with the increase of X atomic number. The electronic structures demonstrate that the X atom has no contribution to the occupied molecular orbitals near the Fermi level of X@C20F20, and the contribution of the X atom to the unoccupied molecular orbitals is relatively large. The calculation also shows that the atoms of He and Kr obtain 0.126 and 0.271 electrons from the carbons of the C20F20 cage, while Ar and Ne transfer 0.060 and 0.012 electrons to the carbons of the cage repectively. Thus there are electrons transferring between the X atoms and the carbons of the cage, indicating that the formed C-X bonds of the X@C20F20 are ionic bonds.
      通信作者: 曹青松, qscao@163.com
    • 基金项目: 国家自然科学基金(批准号: 21403111)资助的课题.
      Corresponding author: Cao Qing-Song, qscao@163.com
    • Funds: Project supported by the National Science Foundation of China (Grant No. 21403111).
    [1]

    Kroto H W, Heath J R, O'Brien S C, Curl R F, Smalley R E 1985 Nature 318 162

    [2]

    Cao Q S, Yuan Y B, Xiao C Y, Lu R F, Kan E J, Deng K M 2012 Acta Phys. Sin. 61 106101 (in Chinese) [曹青松, 袁勇波, 肖传云, 陆瑞峰, 阚二军, 邓开明 2012 物理学报 61 106101]

    [3]

    Das S K, Song B, Mahler A, Nesterov V N, Wilson A K, Ito O, D'Souza F 2014 J. Phys. Chem. C 118 3994

    [4]

    Moor K J, Valle D C, Li C H, Kim J H 2015 Environ. Sci. Technol. 49 6190

    [5]

    Saunders M, Jiménez-Vázquez H A, Cross R J, Poreda R J 1993 Science 259 1428

    [6]

    Khong A, Jiménez-Vázquez H A, Saunders M, Cross R J, Laskin J, Peres T, Lifshitz C, Strongin R, Smith III A B 1998 J. Am. Chem. Soc. 120 6380

    [7]

    Paquette L A, Ternansky R J, Balogh D W, Kentgen G 1983 J. Am. Chem. Soc. 105 5446

    [8]

    Cross R J, Saunders M, Prinzbach H 1999 Org. Lett. 1 1479

    [9]

    Jiménez-Vázquez H A, Tamariz J, Cross R J 2001 J. Phys. Chem. A 105 1315

    [10]

    Moran D, Stahl F, Jemmis E D, Schaefer H F, Schleyer P V 2002 J. Phys. Chem. A 106 5144

    [11]

    Chen Z F, Jiao H J, Moran D, Hirsch A, Thiel W, Schleyer Pv R 2003 J. Phys. Chem. A 107 2075

    [12]

    An Y P, Yang C L, Wang M S, Ma X G, Wang D H 2009 J. Phys. Chem. C 113 15756

    [13]

    Prinzbach H, Weber K 1994 Angew. Chem. Int. Ed. Engl. 33 2239

    [14]

    Zhang C Y, Wu H S, Jiao H J 2007 J. Mol. Model. 13 499

    [15]

    Zhang C Y, Wu H S 2007 J. Mol. Struct: Theochem. 815 71

    [16]

    Tang C M, Zhu W H, Deng K M 2010 Chin. Phys. B 19 033604

    [17]

    Becke A D 1993 J. Chem. Phys. 98 5648

    [18]

    Perdew J P, Burke K, Ernzerhof M 1997 Phys. Rev. Lett. 78 1396

    [19]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133

    [20]

    Holloway J H, Hope E G, Taylor R, Langley G J, Avent A G, Dennis T J, Hare J P, Kroto H W, Walton D R M 1991 J. Chem. Soc. Chem. Commun. 966

    [21]

    Lu G L, Yuan Y B, Deng K M, Wu H P, Yang J L, Wang X 2006 Chem. Phys. Lett. 424 142

    [22]

    Woodward R B, Hoffmann R 1965 J. Am. Chem. Soc. 87 395

  • [1]

    Kroto H W, Heath J R, O'Brien S C, Curl R F, Smalley R E 1985 Nature 318 162

    [2]

    Cao Q S, Yuan Y B, Xiao C Y, Lu R F, Kan E J, Deng K M 2012 Acta Phys. Sin. 61 106101 (in Chinese) [曹青松, 袁勇波, 肖传云, 陆瑞峰, 阚二军, 邓开明 2012 物理学报 61 106101]

    [3]

    Das S K, Song B, Mahler A, Nesterov V N, Wilson A K, Ito O, D'Souza F 2014 J. Phys. Chem. C 118 3994

    [4]

    Moor K J, Valle D C, Li C H, Kim J H 2015 Environ. Sci. Technol. 49 6190

    [5]

    Saunders M, Jiménez-Vázquez H A, Cross R J, Poreda R J 1993 Science 259 1428

    [6]

    Khong A, Jiménez-Vázquez H A, Saunders M, Cross R J, Laskin J, Peres T, Lifshitz C, Strongin R, Smith III A B 1998 J. Am. Chem. Soc. 120 6380

    [7]

    Paquette L A, Ternansky R J, Balogh D W, Kentgen G 1983 J. Am. Chem. Soc. 105 5446

    [8]

    Cross R J, Saunders M, Prinzbach H 1999 Org. Lett. 1 1479

    [9]

    Jiménez-Vázquez H A, Tamariz J, Cross R J 2001 J. Phys. Chem. A 105 1315

    [10]

    Moran D, Stahl F, Jemmis E D, Schaefer H F, Schleyer P V 2002 J. Phys. Chem. A 106 5144

    [11]

    Chen Z F, Jiao H J, Moran D, Hirsch A, Thiel W, Schleyer Pv R 2003 J. Phys. Chem. A 107 2075

    [12]

    An Y P, Yang C L, Wang M S, Ma X G, Wang D H 2009 J. Phys. Chem. C 113 15756

    [13]

    Prinzbach H, Weber K 1994 Angew. Chem. Int. Ed. Engl. 33 2239

    [14]

    Zhang C Y, Wu H S, Jiao H J 2007 J. Mol. Model. 13 499

    [15]

    Zhang C Y, Wu H S 2007 J. Mol. Struct: Theochem. 815 71

    [16]

    Tang C M, Zhu W H, Deng K M 2010 Chin. Phys. B 19 033604

    [17]

    Becke A D 1993 J. Chem. Phys. 98 5648

    [18]

    Perdew J P, Burke K, Ernzerhof M 1997 Phys. Rev. Lett. 78 1396

    [19]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133

    [20]

    Holloway J H, Hope E G, Taylor R, Langley G J, Avent A G, Dennis T J, Hare J P, Kroto H W, Walton D R M 1991 J. Chem. Soc. Chem. Commun. 966

    [21]

    Lu G L, Yuan Y B, Deng K M, Wu H P, Yang J L, Wang X 2006 Chem. Phys. Lett. 424 142

    [22]

    Woodward R B, Hoffmann R 1965 J. Am. Chem. Soc. 87 395

  • [1] 李鑫, 张梁, 羊梦诗, 储修祥, 徐灿, 陈亮, 王悦悦. 低聚壳聚糖几何结构和物理化学属性的理论研究. 物理学报, 2014, 63(7): 076102. doi: 10.7498/aps.63.076102
    [2] 阮文, 谢安东, 余晓光, 伍冬兰. NaBn(n=19)团簇的几何结构和电子性质. 物理学报, 2012, 61(4): 043102. doi: 10.7498/aps.61.043102
    [3] 曹青松, 袁勇波, 肖传云, 陆瑞锋, 阚二军, 邓开明. C80H80几何结构和电子性质的密度泛函研究. 物理学报, 2012, 61(10): 106101. doi: 10.7498/aps.61.106101
    [4] 唐春梅, 郭微, 朱卫华, 刘明熠, 张爱梅, 巩江峰, 王辉. 内掺过渡金属非典型富勒烯M@C22(M=Sc, Ti, V, Cr, Mn, Fe, Co, Ni) 几何结构、电子结构、稳定性和磁性的密度泛函研究. 物理学报, 2012, 61(2): 026101. doi: 10.7498/aps.61.026101
    [5] 张秀荣, 吴礼清, 饶倩. (OsnN)0,(n=16)团簇电子结构与光谱性质的理论研究. 物理学报, 2011, 60(8): 083601. doi: 10.7498/aps.60.083601
    [6] 张秀荣, 李扬, 杨星. WnNim(n+m=8)团簇结构与电子性质的理论研究. 物理学报, 2011, 60(10): 103601. doi: 10.7498/aps.60.103601
    [7] 张秀荣, 吴礼清, 康张李, 唐会帅. OsnN0,±(n=1—6)团簇几何结构与稳定性的理论研究. 物理学报, 2011, 60(5): 053601. doi: 10.7498/aps.60.053601
    [8] 高虹, 朱卫华, 唐春梅, 耿芳芳, 姚长达, 徐云玲, 邓开明. 内掺氮富勒烯N2@C60的几何结构和电子性质的密度泛函计算研究. 物理学报, 2010, 59(3): 1707-1711. doi: 10.7498/aps.59.1707
    [9] 杨剑, 王倪颖, 朱冬玖, 陈宣, 邓开明, 肖传云. MPb10(M=Ti,V,Cr,Cu,Pd)几何结构和磁性的密度泛函计算研究. 物理学报, 2009, 58(5): 3112-3117. doi: 10.7498/aps.58.3112
    [10] 陈亮, 徐灿, 张小芳. 氧化镁纳米管团簇电子结构的密度泛函研究. 物理学报, 2009, 58(3): 1603-1607. doi: 10.7498/aps.58.1603
    [11] 刘立仁, 雷雪玲, 陈杭, 祝恒江. Bn(n=2—15)团簇的几何结构和电子性质. 物理学报, 2009, 58(8): 5355-5361. doi: 10.7498/aps.58.5355
    [12] 李喜波, 王红艳, 罗江山, 吴卫东, 唐永建. 密度泛函理论研究ScnO(n=1—9)团簇的结构、稳定性与电子性质. 物理学报, 2009, 58(9): 6134-6140. doi: 10.7498/aps.58.6134
    [13] 唐春梅, 朱卫华, 邓开明. 内掺过渡金属富勒烯衍生物Ni@C20H20几何结构、成键和电磁性质的密度泛函计算研究. 物理学报, 2009, 58(7): 4567-4572. doi: 10.7498/aps.58.4567
    [14] 曹青松, 邓开明, 陈宣, 唐春梅, 黄德财. MC20F20(M=Li,Na,Be和Mg)几何结构和电子性质的密度泛函计算研究. 物理学报, 2009, 58(3): 1863-1869. doi: 10.7498/aps.58.1863
    [15] 葛桂贤, 罗有华. 密度泛函理论研究MgnOn(n=2—8)团簇的结构和电子性质. 物理学报, 2008, 57(8): 4851-4856. doi: 10.7498/aps.57.4851
    [16] 蒋岩玲, 付石友, 邓开明, 唐春梅, 谭伟石, 黄德财, 刘玉真, 吴海平. C60富勒烯-巴比妥酸及其二聚体几何结构和电子结构的密度泛函计算研究. 物理学报, 2008, 57(6): 3690-3697. doi: 10.7498/aps.57.3690
    [17] 柏于杰, 付石友, 邓开明, 唐春梅, 陈 宣, 谭伟石, 刘玉真, 黄德财. 密度泛函理论计算内掺氢分子富勒烯H2@C60及其二聚体的几何结构和电子结构. 物理学报, 2008, 57(6): 3684-3689. doi: 10.7498/aps.57.3684
    [18] 陈 宣, 卢功利, 唐春梅, 邓开明, 谭伟石. M2Sn17(M=Ni,Mn)及其阴离子的几何结构、电子结构和磁性的计算研究. 物理学报, 2007, 56(9): 5216-5220. doi: 10.7498/aps.56.5216
    [19] 唐春梅, 袁勇波, 邓开明, 杨金龙. C72,La2@C72几何结构和电子性质的计算研究. 物理学报, 2006, 55(7): 3601-3605. doi: 10.7498/aps.55.3601
    [20] 陈 波, 夏庆中, V. T. Lebedev. 富勒烯-PVP聚合物链团结构的中子小角散射实验研究. 物理学报, 2005, 54(6): 2821-2825. doi: 10.7498/aps.54.2821
计量
  • 文章访问数:  3248
  • PDF下载量:  216
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-15
  • 修回日期:  2015-12-17
  • 刊出日期:  2016-03-05

X@C20F20(X=He,Ne,Ar,Kr)几何结构和 电子结构的理论研究

  • 1. 南京理工大学泰州科技学院, 泰州 225300;
  • 2. 南京理工大学应用物理系, 南京 210094
  • 通信作者: 曹青松, qscao@163.com
    基金项目: 国家自然科学基金(批准号: 21403111)资助的课题.

摘要: 采用密度泛函理论中的广义梯度近似, 对X@C20F20(X=He, Ne, Ar, Kr)几何结构和电子结构进行了计算研究. 几何结构优化发现: 惰性气体原子X内掺到C20F20笼后, 均稳定于碳笼中心, 随着内掺X原子序数的增大, X原子对C20F20笼的影响越来越大. 能隙、内掺能和振动频率计算表明: 内掺X原子使得C20F20的稳定性得到了显著提升, X@C20F20(X=He, Ne, Ar, Kr)都具有良好的稳定性, 并且随着X原子序数的增大, 其稳定性也基本呈现逐渐增强的趋势. 电子结构研究发现: X原子对X@C20F20费米能级附近的占据轨道基本没有贡献, 而对其未占据轨道贡献较大. 计算还发现: 在X@C20F20中, He 和Kr分别从C20F20的C 笼上获得了0.126和0.271个电子, 而Ne和Ar却分别向C笼转移了0.060和0.012个电子. 由此可见: X原子与C原子之间都发生了电荷转移, C笼上的C原子与惰性气体原子X间形成了一定的离子键.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回