搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于溶胶-凝胶和激光熔融法制备掺镱石英玻璃

梁婉婷 候峙云 周桂耀 夏长明 张卫 韦乐峰 刘建涛

引用本文:
Citation:

基于溶胶-凝胶和激光熔融法制备掺镱石英玻璃

梁婉婷, 候峙云, 周桂耀, 夏长明, 张卫, 韦乐峰, 刘建涛

Investigation on Yb3+-doped silica glass using sol-gel method and laser melting technology

Liang Wan-Ting, Hou Zhi-Yun, Zhou Gui-Yao, Xia Chang-Ming, Zhang Wei, Wei Le-Feng, Liu Jian-Tao
PDF
导出引用
  • 掺镱石英基玻璃是研究高功率光纤激光器用增益光纤的核心材料. 本文采用正硅酸乙酯TEOS,AlCl3,YbCl36H2O作为前驱体的溶胶-凝胶法制备掺杂石英粉体,利用激光烧结技术制备出高纯镱离子掺杂石英玻璃. 实验测试结果表明:通过控制高温处理时合理的温度制度,可有效地排除干凝胶的水分和有机物,制备出的玻璃样品没有出现析晶现象,并表现出良好的光学特性. 这些实验结果对未来拉制高性能镱离子掺杂光纤,以及研制高功率激光器都具有重要意义.
    Rare earth doped silica glass can be used as the central material of optical fiber, which can be applied to the fiber laser. It becomes a focus in the field of laser materials. Compared with different kinds of rare earth elements, ytterbium is regarded as a promising laser nuclear fusion material due to its simple level structure, strong energy conversion efficiency, long fluorescent lifetime, etc. Nowadays, the usual fabrication method of optical fiber preform is the chemical vapor deposition (CVD). However, the preform made by CVD has low doping concentration, few kinds of doping elements, low homogeneity and hard-to-make into optical fiber of large core diameter. To solve these problems, a noble method, which is called non-chemical vapor deposition (Non-CVD), is developed. Sol-Gel method is a kind of Non-CVD, which can perfectly solve the inhomogeneity in material. The glass has harmonious component since the whole process is at a liquid level.Sol-Gel method is a liquid phase synthesis method. The raw materials, including TEOS, absolute ethyl alcohol, ammonium hydroxide and deionized water, are uniformly mixed and become gel from sol through the hydrolysis and condensation. AlCl3 and YbCl36H2O are also added as the dopants. After that, heat the gel and let the hydroxyl and organic release, then we will be able to obtain the SiO2-doped powder. Combining with the laser melting technology, the ytterbium doped silica glass is made. It is known from the DSC-TG curve of xerogel that during the heating process, water and organic are expelled from the system. It needs a holding period at 500 ℃ to ensure that the water and organic are expelled adequately. Moreover, the FTIR spectrum shows that after high temperature treatment the OH- concentration in the xerogel decreases dramatically. The physical and spectrum properties of ytterbium doped silica glass are also tested. The Yb-doped silica glass which shows the amorphous state has good optical properties. The absorption spectrum and fluorescence spectrum demonstrate the typical absorption peak and emission peak of Yb3+, respectively. The density and refractive index of the glass are 2.409 g/cm3 and 1.462, respectively. The fluorescence lifetime () of the silica glass is 0.88 ms, the corresponding emission cross-section (emi) is 0.54 pm2, and the gain coefficient (emi) is 0.48 pm2m. In conclusion, the Yb-doped silica glass is successfully prepared by the Sol-Gel method combined with laser melting technology, which possesses good physical and optical properties. This work is meaningful for preparing high-performance Yb-doped fiber, and even for developing the high power laser.
      通信作者: 候峙云, houzhiyun@163.com
    • 基金项目: 国家自然科学基金(批准号:61377100,61575066)和广东省自然基金(批准号:2014030313428)资助的课题.
      Corresponding author: Hou Zhi-Yun, houzhiyun@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos.61377100, 61575066) and the Natural Science Foundation of Guangdong Province, China (Grant No. 2014030313428).
    [1]

    Boullet J, Zaouter Y, Desmarchelier R, Cazaux M, Salin F, Saby J, Bello-Doua R, Cormier E 2008 Opt. Express 16 17891

    [2]

    Paul M C, Upadhyaya B N, Das S, Dhar A, Pal M, Kher S, Dasgupta K, Bhadra S K, Sen R 2010 Opt. Commun. 283 1039

    [3]

    Liu J T, Zhou G Y, Xia C M 2013 Acta Phot. Sin. 42 552 (in Chinese) [刘建涛, 周桂耀, 夏长明 2013 光子学报 42 552]

    [4]

    Zhang M H 2012 M.S. Thesis (Heilongjiang: Harbin Engineering University) (in Chinese) [张明慧 2012 硕士学位论文(黑龙江: 哈尔滨工程大学)]

    [5]

    Liu S, Chen D P 2013 Laser Opt. Prog. 50 11001(in Chinese)[刘双, 陈丹平 2013 激光与光电子学进展 50 11001]

    [6]

    Sekiya E H, Barua P, Saito K, Ikushima A J 2008 J. Non-cryst. Solids 354 4737

    [7]

    Wang S K, Li Z L, Yu C L, Wang M, Feng S Y, Zhou Q L, Chen D P, Hu L L 2013 Opt. Mater. 35 1752

    [8]

    Hamzaoui H E, Bouazaoui M, Capoen B 2015 J. Mol. Struct. 1009 77

    [9]

    Etissa D, Pilz S, Ryser M, Romano V 2012 Proc. SPIE 8426

    [10]

    Toki M, Miyashita S, Takeuchi T, Kanbe S, Kochi A 1998 J. Non-cryst. Solids 100 479

    [11]

    Buckley A M, Greenblatt M 1994 J. Chem. Educ. 71 599

    [12]

    Zhang W, Wu J L, Zhou G Y, Xia C M, Liu J T, Tian H C, Liang W T, Hou Z Y 2016 Laser Phys. 26 1

    [13]

    Payne S A, Chase L L, Smith L K, Kway W L 1992 Quantum Electron. 28 2619

    [14]

    Zou X L, Toratani H 1995 Phys. Rev. B 52 15889

    [15]

    Skoog D A, West D M (translated by Jin Q H) 1987 Principles of Instrumental Analysis (Shanghai: Shanghai Scientific Technical Publishers) p150 (in Chinese) [Skoog D A, West D M 著 (金钦汉译) 1987 仪器分析原理 (上海: 上海科技出版社)p150]

    [16]

    Liu S J, Li H Y, Tang Y X, Hu L L 2012 Chin. Opt. Lett. 10 1

  • [1]

    Boullet J, Zaouter Y, Desmarchelier R, Cazaux M, Salin F, Saby J, Bello-Doua R, Cormier E 2008 Opt. Express 16 17891

    [2]

    Paul M C, Upadhyaya B N, Das S, Dhar A, Pal M, Kher S, Dasgupta K, Bhadra S K, Sen R 2010 Opt. Commun. 283 1039

    [3]

    Liu J T, Zhou G Y, Xia C M 2013 Acta Phot. Sin. 42 552 (in Chinese) [刘建涛, 周桂耀, 夏长明 2013 光子学报 42 552]

    [4]

    Zhang M H 2012 M.S. Thesis (Heilongjiang: Harbin Engineering University) (in Chinese) [张明慧 2012 硕士学位论文(黑龙江: 哈尔滨工程大学)]

    [5]

    Liu S, Chen D P 2013 Laser Opt. Prog. 50 11001(in Chinese)[刘双, 陈丹平 2013 激光与光电子学进展 50 11001]

    [6]

    Sekiya E H, Barua P, Saito K, Ikushima A J 2008 J. Non-cryst. Solids 354 4737

    [7]

    Wang S K, Li Z L, Yu C L, Wang M, Feng S Y, Zhou Q L, Chen D P, Hu L L 2013 Opt. Mater. 35 1752

    [8]

    Hamzaoui H E, Bouazaoui M, Capoen B 2015 J. Mol. Struct. 1009 77

    [9]

    Etissa D, Pilz S, Ryser M, Romano V 2012 Proc. SPIE 8426

    [10]

    Toki M, Miyashita S, Takeuchi T, Kanbe S, Kochi A 1998 J. Non-cryst. Solids 100 479

    [11]

    Buckley A M, Greenblatt M 1994 J. Chem. Educ. 71 599

    [12]

    Zhang W, Wu J L, Zhou G Y, Xia C M, Liu J T, Tian H C, Liang W T, Hou Z Y 2016 Laser Phys. 26 1

    [13]

    Payne S A, Chase L L, Smith L K, Kway W L 1992 Quantum Electron. 28 2619

    [14]

    Zou X L, Toratani H 1995 Phys. Rev. B 52 15889

    [15]

    Skoog D A, West D M (translated by Jin Q H) 1987 Principles of Instrumental Analysis (Shanghai: Shanghai Scientific Technical Publishers) p150 (in Chinese) [Skoog D A, West D M 著 (金钦汉译) 1987 仪器分析原理 (上海: 上海科技出版社)p150]

    [16]

    Liu S J, Li H Y, Tang Y X, Hu L L 2012 Chin. Opt. Lett. 10 1

  • [1] 刘贤哲, 张旭, 陶洪, 黄健朗, 黄江夏, 陈艺涛, 袁炜健, 姚日晖, 宁洪龙, 彭俊彪. 溶胶-凝胶法制备氧化锡基薄膜及薄膜晶体管的研究进展. 物理学报, 2020, 69(22): 228102. doi: 10.7498/aps.69.20200653
    [2] 周攀钒, 袁欢, 徐小楠, 鹿轶红, 徐明. 过渡金属与F共掺杂ZnO薄膜结构及磁、光特性. 物理学报, 2015, 64(24): 247503. doi: 10.7498/aps.64.247503
    [3] 杨虹, 齐伟华, 纪登辉, 尚志丰, 张晓云, 徐静, 郎莉莉, 唐贵德. 钙钛矿锰氧化物La2/3Sr1/3FexMn1-xO3的结构与磁性研究. 物理学报, 2014, 63(8): 087503. doi: 10.7498/aps.63.087503
    [4] 齐智坚, 黄维刚. 白光LED用Ca3Si3O9:Dy3+荧光粉的制备及其发光性能. 物理学报, 2013, 62(19): 197801. doi: 10.7498/aps.62.197801
    [5] 张丽, 徐明, 余飞, 袁欢, 马涛. Fe, Co共掺杂ZnO薄膜结构及发光特性研究. 物理学报, 2013, 62(2): 027501. doi: 10.7498/aps.62.027501
    [6] 王兴军, 董斌, 周治平. Er硅酸盐化合物薄膜的相转变和光致发光特性研究. 物理学报, 2010, 59(5): 3554-3557. doi: 10.7498/aps.59.3554
    [7] 张嬛, 刘发民, 丁芃, 钟文武, 周传仓. BiFeO3纳米粉的制备、结构表征及铁磁特性. 物理学报, 2010, 59(3): 2078-2084. doi: 10.7498/aps.59.2078
    [8] 刘吉地, 王育华. Mg2+掺杂Zn2SiO4:Mn2+的溶胶-凝胶法合成及真空紫外发光特性研究. 物理学报, 2010, 59(5): 3558-3563. doi: 10.7498/aps.59.3558
    [9] 胡林华, 戴俊, 刘伟庆, 王孔嘉, 戴松元. 锐钛矿相纳米TiO2晶体生长动力学及生长过程控制. 物理学报, 2009, 58(2): 1115-1119. doi: 10.7498/aps.58.1115
    [10] 罗炳成, 周超超, 陈长乐, 金克新. 单相Bi0.9Ba0.1Fe0.85Mn0.15O3陶瓷中的多铁性. 物理学报, 2009, 58(7): 4563-4566. doi: 10.7498/aps.58.4563
    [11] 刘妍妍, 刘发民, 石 霞, 丁 芃, 周传仓. 钙钛矿型纳米BaFeO3的制备、结构表征及铁磁性研究. 物理学报, 2008, 57(11): 7274-7278. doi: 10.7498/aps.57.7274
    [12] 向卫东, 唐珊珊, 张希艳, 杨昕宇, 张延华. 溶胶-凝胶法制备PbS量子点玻璃的研究. 物理学报, 2008, 57(7): 4607-4612. doi: 10.7498/aps.57.4607
    [13] 方 洪, 孙 慧, 朱 骏, 毛翔宇, 陈小兵. 溶胶-凝胶法制备Sr2Bi4Ti5O18薄膜及其铁电性能研究. 物理学报, 2006, 55(6): 3086-3090. doi: 10.7498/aps.55.3086
    [14] 胡林华, 戴松元, 王孔嘉. 纳米TiO2多孔膜的微结构对染料敏化纳米薄膜太阳电池性能的影响. 物理学报, 2005, 54(4): 1914-1918. doi: 10.7498/aps.54.1914
    [15] 贾建峰, 黄 凯, 潘清涛, 贺德衍. 溶胶-凝胶法制备(Ba0.7Sr0.3)TiO3/LaNiO3异质薄膜及其结构和介电性质研究. 物理学报, 2005, 54(9): 4406-4410. doi: 10.7498/aps.54.4406
    [16] 杜丕一, 隋 帅, 翁文剑, 韩高荣, 汪建勋. Mg掺杂PST薄膜的溶胶-凝胶法制备及晶相形成研究. 物理学报, 2005, 54(11): 5411-5416. doi: 10.7498/aps.54.5411
    [17] 王 强, 沈明荣, 侯 芳, 甘肇强. 烘烤温度对溶胶-凝胶法制备镧掺杂钛酸铋薄膜结构与铁电性质的影响. 物理学报, 2004, 53(7): 2373-2377. doi: 10.7498/aps.53.2373
    [18] 徐润, 沈明荣, 葛水兵. 溶胶-凝胶法制备BaTiO3/SrTiO3多层膜的介电增强效应. 物理学报, 2002, 51(5): 1139-1143. doi: 10.7498/aps.51.1139
    [19] 杨合情, 王喧, 张邦劳, 李永放, 张良莹, 姚熹. 溶胶-凝胶法制备的GeO2-SiO2凝胶玻璃的红光发射. 物理学报, 2002, 51(1): 178-182. doi: 10.7498/aps.51.178
    [20] 张龙, 林凤英, 胡和方. Yb3+掺杂四磷酸盐玻璃光谱研究. 物理学报, 2001, 50(7): 1378-1384. doi: 10.7498/aps.50.1378
计量
  • 文章访问数:  2900
  • PDF下载量:  229
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-11
  • 修回日期:  2016-06-15
  • 刊出日期:  2016-09-05

基于溶胶-凝胶和激光熔融法制备掺镱石英玻璃

  • 1. 华南师范大学, 广州市特种光纤光子器件与应用重点实验室, 广州 510006
  • 通信作者: 候峙云, houzhiyun@163.com
    基金项目: 国家自然科学基金(批准号:61377100,61575066)和广东省自然基金(批准号:2014030313428)资助的课题.

摘要: 掺镱石英基玻璃是研究高功率光纤激光器用增益光纤的核心材料. 本文采用正硅酸乙酯TEOS,AlCl3,YbCl36H2O作为前驱体的溶胶-凝胶法制备掺杂石英粉体,利用激光烧结技术制备出高纯镱离子掺杂石英玻璃. 实验测试结果表明:通过控制高温处理时合理的温度制度,可有效地排除干凝胶的水分和有机物,制备出的玻璃样品没有出现析晶现象,并表现出良好的光学特性. 这些实验结果对未来拉制高性能镱离子掺杂光纤,以及研制高功率激光器都具有重要意义.

English Abstract

参考文献 (16)

目录

    /

    返回文章
    返回