搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

神光III主机上球腔辐射场实验的三维数值模拟与分析

李树 陈耀桦 姬志成 章明宇 任国利 霍文义 闫威华 韩小英 李志超 刘杰 蓝可

引用本文:
Citation:

神光III主机上球腔辐射场实验的三维数值模拟与分析

李树, 陈耀桦, 姬志成, 章明宇, 任国利, 霍文义, 闫威华, 韩小英, 李志超, 刘杰, 蓝可

Three-dimensional simulations and analyses of spherical hohlraum experiments on SGⅢ laser facility

Li Shu, Chen Yao-Hua, Ji Zhi-Cheng, Zhang Ming-Yu, Ren Guo-Li, Huo Wen-Yi, Yan Wei-Hua, Han Xiao-Ying, Li Zhi-Chao, Liu Jie, Lan Ke
PDF
导出引用
  • 2015年在神光Ⅲ激光装置上开展了两孔球腔物理实验.利用三维隐式蒙特卡罗数值模拟程序模拟两孔球腔中的辐射输运问题,研究辐射场分布及其动态演化过程.数值模拟结果大多数与实验结果符合较好,但局部位置存在明显差异.分析了产生差异的可能原因,提出解决措施及未来发展方向.综合数值模拟结果及其与实验结果的对比可知,三维隐式蒙特卡罗数值模拟程序具备较好的黑腔三维辐射输运数值模拟能力.
    A new type of laser fusion indirect drive octahedral spherical hohlraum has been built up by Chinese researchers in recent years. The hohlraum with 6 laser entrance holes (LEHs) has superiority over other hohlraum configurations in both robust inherent high symmetry and high coupling energy efficiency from laser to hotspot for inertial confinement fusion study. Recently, an experimental investigation on radiation emission from the spherical hohlraum with two LEHs has been performed on the SGⅢ laser facility. In this experiment, 32 laser beams (24 beams from the top, 8 beams from the bottom) are injected into the hohlraum within 3 ns, and the total laser energy is 86.4 kJ. The hohlraum radius is 1.8 mm, and the radius of laser entrance hole is 0.6 mm. The experiments are conducted under two conditions:one is that a 0.48-radius capsule is located at the center of the hohlraum, and the other is that nothing is located in the hohlraum. Some flat response X-ray detectors (FXRDs) are installed at different angles on the target wall to collect the radiation energy. We carry out three-dimensional (3D) simulations of the experiment by using our 3D radiation implicit Monte Carlo code IMC3D. This code was developed in recent years based on fleck and Cumming's ideas. The hydrodynamics is not taken into consideration in the simulations, so we deduct 30% laser energy lost to hohlraum wall movements and back scattered by laser plasma instabilities. Based on the approximation, the simulation results are reasonable in principle. As a result, the radiation temperature of the hohlraum with capsule is 230 eV, and the radiation temperature of the hohlraum without capsule is 238 eV. At the end of laser injection, the capsule reflection ratio is 0.83. Compared with the experimental data, most of the simulation data agree well with the detector observations, except the data at 0 angle. The possible reasons for the difference are analyzed. The flux at 0 angle is more sensitive to the wall plasma movements than at the other angles. So if we ignore this phenomenon, then the witch will occur both in experiment and in simulation, yielding obvious differences for those quantities which strongly relate to the hydrodynamics of wall plasma. Finally, the methods of eliminating the difference are proposed and the prospect of IMC3D is presented.
      通信作者: 李树, li_shu@iapcm.ac.cn
    • 基金项目: 中国工程物理研究院科学技术发展重点基金(批准号:2013A0102002,2012A0102005)和国家自然科学基金(批准号:11475033)资助的课题.
      Corresponding author: Li Shu, li_shu@iapcm.ac.cn
    • Funds: Project supported by the Technology Development Key Foundation of China Academy of Engineering Physics (Grant Nos. 2013A0102002, 2012A0102005) and the National Natural Science Foundation of China (Grant No. 11475033).
    [1]

    Zhang J, Chang T Q 2004 Fundaments of the Target Physics for Laser Fusion (Beijing: National Defense Industry Press) (in Chinese)[张均, 常铁强 2004 激光核聚变靶物理基础(北京: 国防工业出版社)]

    [2]

    Atzeni S, Meyer-ter-Vehn J (Shen B F, Transl.) 2008 The Physics of Inertial Fusion (Beijing: Science Press) (in Chinese)[阿蔡塞, 迈耶特费 (沈百飞 译) 2008 惯性聚变物理 (北京: 科学出版社)]

    [3]

    Lindl J D 1995 Phys. Plasmas 2 3933

    [4]

    Moses E I, Boyd R N, Remington B A, Keane C J, Al-Ayat R 2009 Phys. Plasmas 16 041006

    [5]

    Moses E I, Lindl J D, Spaeth M L, Patterson R W, Sawicki R H, Atherton L J, Baisden P A, Lagin L J, Larson D W, Magowan B J, Miller G H, Rardin D C, Roberts V S, van Wonterghem B M, Wegner P J 2016 Fusion Sci. Technol. 69 1

    [6]

    Lindl J D 2014 Phys. Plasmas 21 020501

    [7]

    Lan K, Liu J, Lai D X, Zheng W D, He X T 2014 Phys. Plasmas 21 010704

    [8]

    Lan K, He X T, Liu J, Zheng W D, Lai D X 2014 Phys. Plasmas 21 052704

    [9]

    Lan K, Zheng W D 2014 Phys. Plasmas 21 090704

    [10]

    Huo W Y, Liu J, Zhao Y Q, Zheng W D, Lan K 2014 Phys. Plasmas 21 114503

    [11]

    Li S, Lan K, Liu J 2015 Laser Part. Beams 15 263

    [12]

    Lan K, Liu J, Li Z C, Xie X F, Huo W Y, Chen Y H, Ren G L, Zheng C Y, Yang D, Li S W, Yang Z W, Guo L, Li S, Zhang M Y, Han X Y, Zhai C L, Hou L F, Li Y K, Deng K L, Yuan Z, Zhan X Y, Wang F, Yuan G H, Zhang H J, Jiang B B, Huang L Z, Zhang W, Du K, Zhao R C, Li P, Wang W, Su J Q, Deng X W, Hu D X, Zhou W, Jia H T, Ding Y K, Zheng W G, He X T 2016 Matter Radiat. Extremes 1 8

    [13]

    Fleck J A, Cummings J D 1971 J. Comput. Phys. 8 313

    [14]

    Li S, Li G, Tian D F, Deng L 2013 Acta Phys. Sin. 62 249501 (in Chinese)[李树, 李刚, 田东风, 邓力 2013 物理学报 62 249501]

    [15]

    Huo W Y, Li Z C, Yang D, Lan K, Liu J, Ren G L, Li S W, Yang Z W, Guo L, Hou L F, Xie X F, Li Y K, Deng K L, Yuan Z, Zhan X Y, Yuan G H, Zhang H J, Jiang B B, Huang L Z, Du K, Zhao R C, Li P, Wang W, Su J Q, Ding Y K, He X T, Zhang W Y 2016 Matter Radiat. Extremes 1 2

  • [1]

    Zhang J, Chang T Q 2004 Fundaments of the Target Physics for Laser Fusion (Beijing: National Defense Industry Press) (in Chinese)[张均, 常铁强 2004 激光核聚变靶物理基础(北京: 国防工业出版社)]

    [2]

    Atzeni S, Meyer-ter-Vehn J (Shen B F, Transl.) 2008 The Physics of Inertial Fusion (Beijing: Science Press) (in Chinese)[阿蔡塞, 迈耶特费 (沈百飞 译) 2008 惯性聚变物理 (北京: 科学出版社)]

    [3]

    Lindl J D 1995 Phys. Plasmas 2 3933

    [4]

    Moses E I, Boyd R N, Remington B A, Keane C J, Al-Ayat R 2009 Phys. Plasmas 16 041006

    [5]

    Moses E I, Lindl J D, Spaeth M L, Patterson R W, Sawicki R H, Atherton L J, Baisden P A, Lagin L J, Larson D W, Magowan B J, Miller G H, Rardin D C, Roberts V S, van Wonterghem B M, Wegner P J 2016 Fusion Sci. Technol. 69 1

    [6]

    Lindl J D 2014 Phys. Plasmas 21 020501

    [7]

    Lan K, Liu J, Lai D X, Zheng W D, He X T 2014 Phys. Plasmas 21 010704

    [8]

    Lan K, He X T, Liu J, Zheng W D, Lai D X 2014 Phys. Plasmas 21 052704

    [9]

    Lan K, Zheng W D 2014 Phys. Plasmas 21 090704

    [10]

    Huo W Y, Liu J, Zhao Y Q, Zheng W D, Lan K 2014 Phys. Plasmas 21 114503

    [11]

    Li S, Lan K, Liu J 2015 Laser Part. Beams 15 263

    [12]

    Lan K, Liu J, Li Z C, Xie X F, Huo W Y, Chen Y H, Ren G L, Zheng C Y, Yang D, Li S W, Yang Z W, Guo L, Li S, Zhang M Y, Han X Y, Zhai C L, Hou L F, Li Y K, Deng K L, Yuan Z, Zhan X Y, Wang F, Yuan G H, Zhang H J, Jiang B B, Huang L Z, Zhang W, Du K, Zhao R C, Li P, Wang W, Su J Q, Deng X W, Hu D X, Zhou W, Jia H T, Ding Y K, Zheng W G, He X T 2016 Matter Radiat. Extremes 1 8

    [13]

    Fleck J A, Cummings J D 1971 J. Comput. Phys. 8 313

    [14]

    Li S, Li G, Tian D F, Deng L 2013 Acta Phys. Sin. 62 249501 (in Chinese)[李树, 李刚, 田东风, 邓力 2013 物理学报 62 249501]

    [15]

    Huo W Y, Li Z C, Yang D, Lan K, Liu J, Ren G L, Li S W, Yang Z W, Guo L, Hou L F, Xie X F, Li Y K, Deng K L, Yuan Z, Zhan X Y, Yuan G H, Zhang H J, Jiang B B, Huang L Z, Du K, Zhao R C, Li P, Wang W, Su J Q, Ding Y K, He X T, Zhang W Y 2016 Matter Radiat. Extremes 1 2

  • [1] 黄天晅, 吴畅书, 陈忠靖, 晏骥, 李欣, 葛峰峻, 张兴, 蒋炜, 邓博, 侯立飞, 蒲昱东, 董云松, 王立锋. 在间接驱动内爆实验中采用花生腔增强对称性调控. 物理学报, 2023, 72(2): 025201. doi: 10.7498/aps.72.20220861
    [2] 张喆, 远晓辉, 张翌航, 刘浩, 方可, 张成龙, 刘正东, 赵旭, 董全力, 刘高扬, 戴羽, 谷昊琛, 李玉同, 郑坚, 仲佳勇, 张杰. 超音速高密度喷流对撞过程中的高效能量转移. 物理学报, 2022, 71(15): 155201. doi: 10.7498/aps.71.20220361
    [3] 方可, 张喆, 李玉同, 张杰. 双锥对撞点火机制2020年冬季实验中的瑞利-泰勒不稳定性分析. 物理学报, 2022, 71(3): 035204. doi: 10.7498/aps.71.20211172
    [4] 方可, 张喆, 李玉同, 张杰. 双锥对撞冬季实验中的瑞利-泰勒不稳定性分析. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211172
    [5] 储根柏, 于明海, 税敏, 范伟, 席涛, 景龙飞, 赵永强, 吴玉迟, 辛建婷, 周维民. 强激光间接驱动材料动态破碎过程的实验技术研究. 物理学报, 2020, 69(2): 026201. doi: 10.7498/aps.69.20191245
    [6] 许育培, 李树. 热辐射输运问题的高效蒙特卡罗模拟方法. 物理学报, 2020, 69(2): 029501. doi: 10.7498/aps.69.20191315
    [7] 许育培, 李树. 球几何中辐射源粒子抽样方法的改进. 物理学报, 2020, 69(11): 119501. doi: 10.7498/aps.69.20200024
    [8] 陈忠, 赵子甲, 吕中良, 李俊汉, 潘冬梅. 基于蒙特卡罗-离散纵标方法的氘氚激光等离子体聚变反应率数值模拟. 物理学报, 2019, 68(21): 215201. doi: 10.7498/aps.68.20190440
    [9] 侯鹏程, 钟哲强, 文萍, 张彬. 激光间接驱动球形腔新型光路排布方案. 物理学报, 2016, 65(2): 024202. doi: 10.7498/aps.65.024202
    [10] 李树, 蓝可, 赖东显, 刘杰. 球形黑腔辐射输运问题的蒙特卡罗模拟. 物理学报, 2015, 64(14): 145203. doi: 10.7498/aps.64.145203
    [11] 王龙, 郭尔夫, 韩纪锋, 刘建波, 李永青, 周荣, 杨朝文. 静态真空对超声喷流气体团簇制备的实验研究. 物理学报, 2014, 63(20): 203601. doi: 10.7498/aps.63.203601
    [12] 李树, 邓力, 田东风, 李刚. 基于能量密度分布的辐射源粒子空间抽样方法研究. 物理学报, 2014, 63(23): 239501. doi: 10.7498/aps.63.239501
    [13] 黎航, 蒲昱东, 景龙飞, 林雉伟, 陈伯伦, 蒋炜, 周近宇, 黄天晅, 张海鹰, 于瑞珍, 张继彦, 缪文勇, 郑志坚, 曹柱荣, 杨家敏, 刘慎业, 江少恩, 丁永坤, 况龙钰, 胡广月, 郑坚. 间接驱动的内爆不对称性随腔长和时间变化的研究. 物理学报, 2013, 62(22): 225204. doi: 10.7498/aps.62.225204
    [14] 李树, 李刚, 田东风, 邓力. 热辐射输运问题的隐式蒙特卡罗方法求解. 物理学报, 2013, 62(24): 249501. doi: 10.7498/aps.62.249501
    [15] 王峰, 彭晓世, 刘慎业, 蒋小华, 徐涛, 丁永坤, 张保汉. 三明治靶型在间接驱动冲击波实验中的应用. 物理学报, 2011, 60(11): 115203. doi: 10.7498/aps.60.115203
    [16] 周近宇, 黄天晅, 蒙林, 蒋炜. 半腔靶M带X射线角分布测量与模拟. 物理学报, 2010, 59(3): 1913-1916. doi: 10.7498/aps.59.1913
    [17] 李三伟, 易荣清, 蒋小华, 何小安, 崔延莉, 刘永刚, 丁永坤, 刘慎业, 蓝可, 李永升, 吴畅书, 古培俊, 裴文兵, 贺贤土. 神光Ⅲ原型1 ns激光驱动黑腔辐射温度实验研究. 物理学报, 2009, 58(5): 3255-3261. doi: 10.7498/aps.58.3255
    [18] 林宏奂, 王建军, 隋 展, 李明中, 陈光辉, 丁 磊, 唐 军, 邓青华, 罗亦鸣, 董一方, 李 峰. 用于激光聚变驱动器的全光纤、全固化光脉冲产生系统. 物理学报, 2008, 57(3): 1771-1777. doi: 10.7498/aps.57.1771
    [19] 肖 峻, 吕百达, 姜 明. 零相关位相板准远场应用的数值研究. 物理学报, 2000, 49(12): 2383-2388. doi: 10.7498/aps.49.2383
    [20] 张 彬, 吕百达, 肖 峻. 激光间接驱动聚变的光束均匀化方案研究. 物理学报, 1998, 47(12): 1998-2004. doi: 10.7498/aps.47.1998
计量
  • 文章访问数:  5158
  • PDF下载量:  170
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-16
  • 修回日期:  2017-09-01
  • 刊出日期:  2019-01-20

/

返回文章
返回