搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表面效应对锂离子电池正极材料LiMn2O4性能的影响

胡国进 欧阳楚英

引用本文:
Citation:

表面效应对锂离子电池正极材料LiMn2O4性能的影响

胡国进, 欧阳楚英

Influence of surface effect to the performance of LiMn2O4 cathode material for lithium ion batteries

Ouyang Chu-Ying, Hu Guo-Jin
PDF
导出引用
  • 应用基于自旋极化和广义梯度近似(generalized gradient approximation,GGA)的密度泛函理论计算,研究了锂离子电池正极材料LiMn2O4 (001)表面原子和电子结构.发现表面和亚表面附近的原子在垂直于(001)面的方向上具有非常大的弛豫,这对LiMn2O4材料在锂离子电池中应用时发现的表面Mn的溶解现象有很大关联.由于表面效应,在LiMn2O4 (001) 表面只有三价Mn3+离子存在,而这些三价锰离子非常活跃,在该材料电极/电解液界面很容易发生歧化反应,从而加速了Mn的溶解.其他计算结果也和实验观察相符合.
    The surface geometrical and electronic structure of LiMn2O4 (001) are investigated via a density functional approach within the spin-dependent generalized gradient approximation (GGA). Large relaxations perpendicular to the (001) plane of surface and subsurface atoms are observed, which is partly responsible for the Mn dissolution problem of the material when used as cathode material for lithium ion batteries. Because of the surface effect, only Mn3+ ions are observed at the LiMn2O4 (001) surfaces, which is very active for the disproportionation reaction occurs at the electrode/electrolyte interface. The calculated results are also in good agreements with experimental observations.
    • 基金项目: 国家自然科学基金 (批准号: 10604023)和江西省教育厅科研项目(批准号: JGG10398)资助的课题.
    [1]

    Zhou Z, Yan T Y, Gao X P 2006 Acta Phys. Chim. Sin. 22 1168

    [2]

    Tarascon J M, McKinnon W R, Coowar F, Bowmer T N, Amatucci G, Guyomard D 1994 J. Electrochem. Soc. 141 1421

    [3]

    Goodenough J B 1994 Solid State Ionics 69 184

    [4]

    Yamada I, Abe T, Iriyama Y, Ogumi Z 2003 Electrochem. Comm. 5 502

    [5]

    Eriksson T, Gustafsson T, Thomas J 2002 Electrochem. Solid-State Lett. 5 A35

    [6]

    Eftekhari A 2004 Solid State Ionics 167 237

    [7]

    Kannan A M, Manthiram A 2002 Electrochem. Solid-State Lett. 5 A167

    [8]

    Thackeray M M, David W F, Bruce P G, Goodenough J B 1983 Mater. Res. Bull. 18 461

    [9]

    Gummow R J, Kock A, Thackeray M M 1994 Solid State Ionics 69 59

    [10]

    Choi W, Manthiram A 2006 J. Electrochem. Soc. 153 A1760

    [11]

    Gao Y, Reimers J N, Dahn J R 1996 Phys. Rev. B 54 3837

    [12]

    Mishra S K, Ceder G 1999 Phys. Rev. B 59 6120

    [13]

    Morgan D, Wang B, Ceder G, Walle A V 2003 Phys. Rev. B 67 134404

    [14]

    Ouyang C Y, Shi S Q, Wang Z X, Li H, Huang X J, Chen L Q 2004 Solid State Commun. 130 501

    [15]

    Ouyang C Y, Shi S Q, Wang Z X, Li H, Huang X J, Chen L Q 2004 Europhys. Lett. 67 28

    [16]

    Ouyang C Y, Du Y L, Shi S Q, Lei M S 2009 Phys. Lett. A 373 2796

    [17]

    Liu H Y, Hou Z F, Zhu Z Z, Huang M C, Yang Y 2003 Acta Phys. Sin. 52 1732 (in Chinese) [刘慧英、 侯柱锋、 朱梓忠、 黄美纯、 杨 勇 2003 物理学报 52 1732]

    [18]

    Jin S Z, Huang Z F, Ming X, Wang C Z, Meng X, Chen G 2007 Acta Phys. Sin. 56 6008 (in Chinese) [金胜哲、 黄祖飞、 明 星、 王春忠、 孟 醒、 陈 岗 2007 物理学报 56 6008]

    [19]

    Zhong Z Y, Nie Z Y, Du Y L, Ouyang C Y, Shi S Q, Lei M S 2009 Chin. Phys. B 18 2492

    [20]

    Hou X H, Hu S J, Li W S, Ru Q, Yu H W, Huang Z W 2008 Chin. Phys. B 17 3422

    [21]

    Free DFT simulation package DACAPO: https://wiki.fysik.dtu.dk/dacapo

    [22]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C. 1992 Phys. Rev. B 46 6671

    [23]

    Vanderbilt D 1990 Phys. Rev. B 41 R7892

    [24]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

  • [1]

    Zhou Z, Yan T Y, Gao X P 2006 Acta Phys. Chim. Sin. 22 1168

    [2]

    Tarascon J M, McKinnon W R, Coowar F, Bowmer T N, Amatucci G, Guyomard D 1994 J. Electrochem. Soc. 141 1421

    [3]

    Goodenough J B 1994 Solid State Ionics 69 184

    [4]

    Yamada I, Abe T, Iriyama Y, Ogumi Z 2003 Electrochem. Comm. 5 502

    [5]

    Eriksson T, Gustafsson T, Thomas J 2002 Electrochem. Solid-State Lett. 5 A35

    [6]

    Eftekhari A 2004 Solid State Ionics 167 237

    [7]

    Kannan A M, Manthiram A 2002 Electrochem. Solid-State Lett. 5 A167

    [8]

    Thackeray M M, David W F, Bruce P G, Goodenough J B 1983 Mater. Res. Bull. 18 461

    [9]

    Gummow R J, Kock A, Thackeray M M 1994 Solid State Ionics 69 59

    [10]

    Choi W, Manthiram A 2006 J. Electrochem. Soc. 153 A1760

    [11]

    Gao Y, Reimers J N, Dahn J R 1996 Phys. Rev. B 54 3837

    [12]

    Mishra S K, Ceder G 1999 Phys. Rev. B 59 6120

    [13]

    Morgan D, Wang B, Ceder G, Walle A V 2003 Phys. Rev. B 67 134404

    [14]

    Ouyang C Y, Shi S Q, Wang Z X, Li H, Huang X J, Chen L Q 2004 Solid State Commun. 130 501

    [15]

    Ouyang C Y, Shi S Q, Wang Z X, Li H, Huang X J, Chen L Q 2004 Europhys. Lett. 67 28

    [16]

    Ouyang C Y, Du Y L, Shi S Q, Lei M S 2009 Phys. Lett. A 373 2796

    [17]

    Liu H Y, Hou Z F, Zhu Z Z, Huang M C, Yang Y 2003 Acta Phys. Sin. 52 1732 (in Chinese) [刘慧英、 侯柱锋、 朱梓忠、 黄美纯、 杨 勇 2003 物理学报 52 1732]

    [18]

    Jin S Z, Huang Z F, Ming X, Wang C Z, Meng X, Chen G 2007 Acta Phys. Sin. 56 6008 (in Chinese) [金胜哲、 黄祖飞、 明 星、 王春忠、 孟 醒、 陈 岗 2007 物理学报 56 6008]

    [19]

    Zhong Z Y, Nie Z Y, Du Y L, Ouyang C Y, Shi S Q, Lei M S 2009 Chin. Phys. B 18 2492

    [20]

    Hou X H, Hu S J, Li W S, Ru Q, Yu H W, Huang Z W 2008 Chin. Phys. B 17 3422

    [21]

    Free DFT simulation package DACAPO: https://wiki.fysik.dtu.dk/dacapo

    [22]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C. 1992 Phys. Rev. B 46 6671

    [23]

    Vanderbilt D 1990 Phys. Rev. B 41 R7892

    [24]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

  • [1] 杨章章, 刘丽, 万致涛, 付佳, 樊群超, 谢锋, 张燚, 马杰. 结合机器学习算法提高从头算方法对HF/HBr/H35Cl/Na35Cl振动能谱的预测性能. 物理学报, 2023, 72(7): 073101. doi: 10.7498/aps.72.20221953
    [2] 覃赵福, 陈浩, 胡涛政, 陈卓, 王振林. 基于导波驱动相变材料超构表面的基波及二次谐波聚焦. 物理学报, 2022, 71(3): 034208. doi: 10.7498/aps.71.20211596
    [3] 韩晓琴. SiF2(1A1)自由基的从头算及势能函数. 物理学报, 2014, 63(23): 233101. doi: 10.7498/aps.63.233101
    [4] 韩晓琴, 肖夏杰, 刘玉芳. HNO(1A’)自由基的从头算势能曲线. 物理学报, 2013, 62(19): 193101. doi: 10.7498/aps.62.193101
    [5] 李国旗, 张小超, 丁光月, 樊彩梅, 梁镇海, 韩培德. BiOCl{001}表面原子与电子结构的第一性原理研究. 物理学报, 2013, 62(12): 127301. doi: 10.7498/aps.62.127301
    [6] 韩晓琴, 肖夏杰, 刘玉芳. OH, OCI, HOCI(1A')的从头算与势能曲线. 物理学报, 2012, 61(16): 163101. doi: 10.7498/aps.61.163101
    [7] 饶建平, 欧阳楚英, 雷敏生, 江风益. 第一性原理计算研究金属Nb和间隙氢原子的相互作用. 物理学报, 2012, 61(4): 047105. doi: 10.7498/aps.61.047105
    [8] 周晶晶, 陈云贵, 吴朝玲, 郑欣, 房玉超, 高涛. 新型轻质储氢材料的第一性原理原子尺度设计. 物理学报, 2009, 58(7): 4853-4861. doi: 10.7498/aps.58.4853
    [9] 姬广富, 张艳丽, 崔红玲, 李晓凤, 赵峰, 孟川民, 宋振飞. 从头算方法研究面心立方铝在高温高压下的热力学状态方程. 物理学报, 2009, 58(6): 4103-4108. doi: 10.7498/aps.58.4103
    [10] 桑萃萃, 万建杰, 董晨钟, 丁晓彬, 蒋 军. 锂原子光电离过程中的弛豫效应. 物理学报, 2008, 57(4): 2152-2160. doi: 10.7498/aps.57.2152
    [11] 闫 冰, 潘守甫, 王志刚, 于俊华. S3解离中的非绝热过程. 物理学报, 2006, 55(4): 1736-1739. doi: 10.7498/aps.55.1736
    [12] 梁小蕊, 赵 波, 周志华. 几种香豆素衍生物分子的二阶非线性光学性质的从头算研究. 物理学报, 2006, 55(2): 723-728. doi: 10.7498/aps.55.723
    [13] 刘 峰, 阎守胜. 非理想第二类超导体局域磁弛豫的计算模拟:非均匀钉扎势和表面势垒影响. 物理学报, 2000, 49(9): 1829-1837. doi: 10.7498/aps.49.1829
    [14] 徐秀玮, 赵继德, 任廷琦. 多维相空间中任意指数二次型算符的矩阵元. 物理学报, 2000, 49(1): 17-19. doi: 10.7498/aps.49.17
    [15] 韦联福. q-玻色湮没算符二次方的本征态. 物理学报, 1993, 42(5): 757-761. doi: 10.7498/aps.42.757
    [16] 李列明, 孙鑫, 冯伟国. 金属-真空表面的二次谐波理论. 物理学报, 1990, 39(4): 620-626. doi: 10.7498/aps.39.620
    [17] 李乐, 俞公达, 董抒雁, 王恭明, 章志鸣. 光学二次谐波法研究银表面吸附吡啶分子的特性. 物理学报, 1989, 38(2): 301-306. doi: 10.7498/aps.38.301
    [18] 夏建白. Si,GaAs(111)表面弛豫效应. 物理学报, 1984, 33(2): 143-153. doi: 10.7498/aps.33.143
    [19] 张开明, 叶令. Si(111)表面原子弛豫研究. 物理学报, 1980, 29(1): 122-126. doi: 10.7498/aps.29.122
    [20] 朱镛, 张道范. α-碘酸锂的电流弛豫和偏压场作用下表观介电常数弛豫行为. 物理学报, 1980, 29(4): 454-460. doi: 10.7498/aps.29.454
计量
  • 文章访问数:  7571
  • PDF下载量:  905
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-03-12
  • 修回日期:  2010-03-23
  • 刊出日期:  2010-04-05

/

返回文章
返回