搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

梯度负折射率介质中高斯光束传输特性的研究

周建华 李栋华 曾阳素 朱鸿鹏

引用本文:
Citation:

梯度负折射率介质中高斯光束传输特性的研究

周建华, 李栋华, 曾阳素, 朱鸿鹏

Propagation properties of Gaussian beam in gradient negative index of refraction material

Zhou Jian-Hua, Li Dong-Hua, Zeng Yang-Su, Zhu Hong-Peng
PDF
导出引用
  • 导出了高斯光束在梯度负折射率介质中的ABCD矩阵,据此得到光束在此介质中的传输模型. 并利用此模型分析了高斯光束在梯度负折射率介质中的传输特性,发现它能产生空间孤子及呼吸子形式的传输,并发现光束的束腰半径不一定是最小束宽半径. 还研究了梯度系数对介质聚焦能力的影响,据此可以设计出相应聚焦能力所需要的折射率分布. 最后分析了传输时高斯光束曲率半径的变化情况,与光束束宽半径的变化显著不同,曲率半径始终从无穷大开始,然后产生一个个周期性的变换.
    We apply the ABCD formalism to a gradient negative index medium (NIM) and investigate the propagation and transformation properties of Gaussian beams in this medium. First, we derive the ABCD formalism in a positive gradient NIM and obtain the propagation model. Spatial soliton and the spatial breather propagation in this medium are revealed. Our research suggests that the gradient coefficient has a significant effect on the focusing ability of slab. When the gradient coefficient increases, the quasi-lense effect becomes more prominent and notable. As a result, the focusing ability improves and the beam waist in the focal point shrinks. Second, when Gaussian beams propagate in the negative gradient NIM, the beam waist enlarges as the distance increases. There is neither spatial soliton phenomenon nor breather transmission phenomenon, which is completely different from the propagation characteristics in the positive gradient NIM.
    • 基金项目: 国家自然科学基金(批准号:11247296)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11247296).
    [1]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [2]

    Yao J, Liu Z W, Liu Y M, Wang Y, Sun C, Bartal G, Stacy A M, Zhang X 2008 Science 321 930

    [3]

    Alú A, Engheta N 2008 Phys. Rev. Lett. 100 043901

    [4]

    Zhou J H, Luo H L, Wen S C, Fang A L, Zhuang B X 2009 Acta Phys. Sin. 58 1765 (in Chinese)[周建华, 罗海陆, 文双春, 方安乐, 庄彬先 2009 物理学报 58 1765]

    [5]

    Tang M, Zhou X X, Luo H L, Wen S C 2012 Chin. Phys. B 21 124201

    [6]

    Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L, Chen Z Q 2014 Chin. Phys. B 23 017802

    [7]

    Moore D T 1980 Appl. Opt. 19 1035

    [8]

    Smith D R, Mock J J, Starr A F, Schurig D 2005 Phys. Rev. E 71 036609

    [9]

    Driscoll T, Basov D N, Starr A F, Rye P M, Nemat-Nasser S, Schurig D, Smith D R 2006 Appl. Phys. Lett. 88 081101

    [10]

    Greegor R B, Parazzoli C G, Nielsen J A, Thompson M A, Tanielian M H, Smith D R 2005 Appl. Phys. Lett. 87 091114

    [11]

    Ramakrishna S A, Pendry J B, Schurig D, Smith D R, Schultz S 2002 J. Mod. Opt. 49 1747

    [12]

    Pinchuk A O, Schatz G C 2007 J. Opt. Soc. Am. A 24 A39

    [13]

    Pinchuk A O, Schatz G C 2007 Solid State Electron. 51 1381

    [14]

    Xi C, Xu H S, Yang X M 2009 Appl. Phys. Lett. 95 094107

    [15]

    Nguyen V, Larouche S, Landy N, Lee J S, Smith D R 2012 J. Opt. Soc. Am. A 29 2479

    [16]

    Born M, Wolf E 1999 Principle Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (7th Ed.) (Cambridge: Cambridge University Press) pp58-74

    [17]

    Yarcv A 1975 Quantum Electronics (2nd Ed.) (NewYork: Wiley & Sons) pp67-81

    [18]

    Zhou J H, Luo H L, Wen S C, Zeng Y S 2009 Opt. Commun. 282 2670

  • [1]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [2]

    Yao J, Liu Z W, Liu Y M, Wang Y, Sun C, Bartal G, Stacy A M, Zhang X 2008 Science 321 930

    [3]

    Alú A, Engheta N 2008 Phys. Rev. Lett. 100 043901

    [4]

    Zhou J H, Luo H L, Wen S C, Fang A L, Zhuang B X 2009 Acta Phys. Sin. 58 1765 (in Chinese)[周建华, 罗海陆, 文双春, 方安乐, 庄彬先 2009 物理学报 58 1765]

    [5]

    Tang M, Zhou X X, Luo H L, Wen S C 2012 Chin. Phys. B 21 124201

    [6]

    Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L, Chen Z Q 2014 Chin. Phys. B 23 017802

    [7]

    Moore D T 1980 Appl. Opt. 19 1035

    [8]

    Smith D R, Mock J J, Starr A F, Schurig D 2005 Phys. Rev. E 71 036609

    [9]

    Driscoll T, Basov D N, Starr A F, Rye P M, Nemat-Nasser S, Schurig D, Smith D R 2006 Appl. Phys. Lett. 88 081101

    [10]

    Greegor R B, Parazzoli C G, Nielsen J A, Thompson M A, Tanielian M H, Smith D R 2005 Appl. Phys. Lett. 87 091114

    [11]

    Ramakrishna S A, Pendry J B, Schurig D, Smith D R, Schultz S 2002 J. Mod. Opt. 49 1747

    [12]

    Pinchuk A O, Schatz G C 2007 J. Opt. Soc. Am. A 24 A39

    [13]

    Pinchuk A O, Schatz G C 2007 Solid State Electron. 51 1381

    [14]

    Xi C, Xu H S, Yang X M 2009 Appl. Phys. Lett. 95 094107

    [15]

    Nguyen V, Larouche S, Landy N, Lee J S, Smith D R 2012 J. Opt. Soc. Am. A 29 2479

    [16]

    Born M, Wolf E 1999 Principle Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (7th Ed.) (Cambridge: Cambridge University Press) pp58-74

    [17]

    Yarcv A 1975 Quantum Electronics (2nd Ed.) (NewYork: Wiley & Sons) pp67-81

    [18]

    Zhou J H, Luo H L, Wen S C, Zeng Y S 2009 Opt. Commun. 282 2670

计量
  • 文章访问数:  2208
  • PDF下载量:  483
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-08
  • 修回日期:  2014-01-22
  • 刊出日期:  2014-05-05

梯度负折射率介质中高斯光束传输特性的研究

  • 1. 邵阳学院信息工程系, 激光与信息技术研究所, 邵阳 422000
    基金项目: 

    国家自然科学基金(批准号:11247296)资助的课题.

摘要: 导出了高斯光束在梯度负折射率介质中的ABCD矩阵,据此得到光束在此介质中的传输模型. 并利用此模型分析了高斯光束在梯度负折射率介质中的传输特性,发现它能产生空间孤子及呼吸子形式的传输,并发现光束的束腰半径不一定是最小束宽半径. 还研究了梯度系数对介质聚焦能力的影响,据此可以设计出相应聚焦能力所需要的折射率分布. 最后分析了传输时高斯光束曲率半径的变化情况,与光束束宽半径的变化显著不同,曲率半径始终从无穷大开始,然后产生一个个周期性的变换.

English Abstract

参考文献 (18)

目录

    /

    返回文章
    返回