搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

0.14THz基模多注折叠波导行波管的理论与模拟研究

颜胜美 苏伟 王亚军 徐翱 陈樟 金大志 向伟

引用本文:
Citation:

0.14THz基模多注折叠波导行波管的理论与模拟研究

颜胜美, 苏伟, 王亚军, 徐翱, 陈樟, 金大志, 向伟

Theoretical and simulation study of 0.14 THz fundamental mode multi-beam folded waveguide traveling wave tube

Yan Sheng-Mei, Su Wei, Wang Ya-Jun, Xu Ao, Chen Zhang, Jin Da-Zhi, Xiang Wei
PDF
导出引用
  • 为解决THz行波管工作电流过小、输出功率低等问题, 提出了基模多注工作模式的折叠波导行波管. 首先, 获得了基模多注折叠波导色散特性的等效传输线计算模型, 并与数值模拟结果进行了比较; 然后, 对基模多注折叠波导的传输特性进行了模拟计算; 最后, 通过模拟和理论计算完成了0.14 THz基模多注折叠波导行波管的注波互作用特性分析. 电子注参数为12 mA, 15.75 kV时, 获得的3 dB带宽为25 GHz (128–153 GHz), 最大增益为33.61 dB, 最大峰值功率为23 W; 电子注参数为30 mA, 15.75 kV时, 在0.14 THz处获得了38 dB增益, 最大脉冲输出功率为63.1 W. 对比同条件下基模单注折叠波导行波管, 3 dB带宽提升了1倍, 0.14 THz处输出功率增大了9.66倍, 互作用效率增大了3.22倍; 当增益相同时, 多注方式的互作用长度较单注缩短了33%. 该方法能够有效增大THz行波管的工作电流, 提高互作用增益及效率、3 dB带宽、输出功率; 在增益相同时, 基模多注行波管可以做得更短更紧凑.
    To improve the current and output power of the THz traveling wave tube (TWT), a fundamental mode multi-beam folded waveguide (FMMBFW) TWT scheme is proposed. Firstly, an equivalent circuit model FMMBFW for calculating the high-frequency characteristic is established and compared with numerical simulation. Secondly, the transmission characteristic of 60 periods FMMBFW is analyzed. Finally, the beam-wave interaction characteristic of 0.14 THz FMMBFW TWT is completed by numerical simulation and theoretical calculation. When the DC current is 12 mA and the applied voltage is 15.75 kV, the 3 dB bandwidth of 0.14 THz FMMBFW TWT is 25 GHz (128-153 GHz), the maximum gain is 33.61 dB and the maximum output power is 23 W. When the DC current is 30 mA and the voltage is 15.75 kV, the maximum gain is 38 dB and the maximum pulse output power is 63.1 W at 0.14 THz. Compared with the fundamental single-beam folded waveguide (FW) TWT under the same working condition, the 3 dB bandwidth is doubled, its output power is raised by a factor of 9.66 and the interaction efficiency is increased by 3.22 times. Based on the same gain, the length of FMMBFW TWT is just 52.6 mm while the length of single beam FW-TWT is 78.2 mm. The proposed method can increase effectively the current of FMMBFW TWT; and the interaction gain, efficiency, 3 dB bandwidth, output power can be improved. When the gain is the same, a shorted and compact FMMBFW TWT can be constucuted.
    • 基金项目: 中国工程物理研究院超精密加工技术重点实验室开放基金(批准号:2012CJMZZ00007)资助的课题.
    • Funds: Project supported by the Open Foundation of the Key Laboratory of Precision Manufacturing Technology of China Academy of Engineering Physics (Grant No. 2012CJMZZ00007).
    [1]

    Peter H S 2002 IEEE Trans. Microwave. Theory Tech. 50 910

    [2]

    John H B 2008 Phys. Plasmas 15 055502

    [3]

    Shin Y M, Larry R B, Neville C L 2009 IEEE Trans. Electron Dev. 56 3196

    [4]

    Shin Y M, Baig A, Larry R B, Tsai W C, Neville C L 2012 IEEE Trans. Electron Dev. 59 234

    [5]

    Baig A, Gamzina D, Barchfeld R, Domier C, Barnett L R, Neville C L 2012 Phys. Plasmas 19 093110

    [6]

    Field M, Griffith Z, Young A, Hillman C, Brar B 2014 15th IEEE International Vacuum Electronics Conference Monterey, USA, April 22-24, 2014 p225

    [7]

    Kory C L, Read M, Ives R L 2009 IEEE Trans. Electron Dev. 56 713

    [8]

    Comfoltey E N, Shapiro M, Sirigiri J, Temkin R 2009 10th IEEE International Vacuum Electronics Conference Rome, Italy, April 28-30, 2009 p127

    [9]

    Tucek J C, Basten M A, Gallagher D A, Kreischer K E 2010 11th IEEE International Vacuum Electronics Conference Monterey, USA, May 18-20, 2010 p19

    [10]

    Basten M A, Tucek J C, Gallagher D A 2009 10th IEEE International Vacuum Electronics Conference Rome, Italy, April 28-30, 2009 p110

    [11]

    Basten M A, Tucek J C, Gallagher D A, Kreischer K E 2013 14th IEEE International Vacuum Electronics Conference Paris, France, May 21-23, 2013 p1

    [12]

    Xu X, Wei Y Y, Shen F, Duan Z Y, Gong Y B, Yin H R, Wang W X 2011 IEEE Eletron. Dev. Lett. 32 1152

    [13]

    Lai J Q, Wei Y Y, Liu Y, Huang M Z, Tang T, Wang W X, Gong Y B 2012 Chin. Phys. B 21 068403

    [14]

    Liu L W, Wei Y Y, Wang S M, Hou Y, Yin H R, Zhao G Q, Duan Z Y, Xu J, Gong Y B, Wang W X, Yang M H 2013 Chin. Phys. B 22 108401

    [15]

    Hu Q 2012 Acta Phys. Sin. 61 014101 (in Chinese) [胡权 2012 物理学报 61 014101]

    [16]

    Lai J Q, Wei Y Y, Xu X, Shen F, Liu Y, Liu Y, Huang M Z, Tang T, Gong Y B 2012 Acta Phys. Sin. 61 178501 (in Chinese) [赖剑强, 魏彦玉, 许雄, 沈飞, 刘洋, 刘漾, 黄民智, 唐涛, 宫玉彬 2012 物理学报 61 178501]

    [17]

    Li S, Wang J G, Tong C J, Wang G Q, Lu X C, Wang X F 2013 Acta Phys. Sin. 62 120703 (in Chinese) [李爽, 王建国, 童长江, 王光强, 陆希成, 王雪锋 2013 物理学报 62 120703]

    [18]

    Feng J J, Cai J, Wu X P, Hu Y F, Cui Y D, Dong R T, Liu J K, Chen J, Zhang X Q 2014 15th IEEE International Vacuum Electronics Conference Monterey, USA, April 22-24, 2014 p173

    [19]

    Gong Y B, Yin H R, Yue L N, Lu Z G, Wei Y Y, Feng J J, Duan Z Y, Xu X 2011 IEEE Trans. Plasma Sci. 39 847

    [20]

    Wang S J, Xue X Z, Wang Z C, Zhang S C, Guo J 2014 Chin. J. Vacuum Sci. Technol. 34 43 (in Chinese) [王书见, 薛谦忠, 王自成, 张世昌, 郭际2014真空科学与技术学报 34 43]

    [21]

    Dohler G, Gagne D, Gallagher D, Moats R 1987 IEDM Tech. Dig. 33 485

    [22]

    Ha H J, Jung S S, Park G S 1998 Int. J. Infrared Millim. Waves 19 1229

    [23]

    Curnow H J 1965 IEEE Trans. Microw. Theory Tech. 13 671

    [24]

    Carter R G, Liu S K 1986 IEE Proc. H, Microw. Antenn. Propag. 133 330

    [25]

    Booske J H, Converse M C, Kory C L, Chevalier C T, Gallagher D A, Kreischer K E, Heinen V O, Bhattacharjee S 2005 IEEE Trans. Electron Dev. 52 685

    [26]

    Marcuvitz L 1986 Waveguide Handbook (London: Peter Peregrinus) p365

  • [1]

    Peter H S 2002 IEEE Trans. Microwave. Theory Tech. 50 910

    [2]

    John H B 2008 Phys. Plasmas 15 055502

    [3]

    Shin Y M, Larry R B, Neville C L 2009 IEEE Trans. Electron Dev. 56 3196

    [4]

    Shin Y M, Baig A, Larry R B, Tsai W C, Neville C L 2012 IEEE Trans. Electron Dev. 59 234

    [5]

    Baig A, Gamzina D, Barchfeld R, Domier C, Barnett L R, Neville C L 2012 Phys. Plasmas 19 093110

    [6]

    Field M, Griffith Z, Young A, Hillman C, Brar B 2014 15th IEEE International Vacuum Electronics Conference Monterey, USA, April 22-24, 2014 p225

    [7]

    Kory C L, Read M, Ives R L 2009 IEEE Trans. Electron Dev. 56 713

    [8]

    Comfoltey E N, Shapiro M, Sirigiri J, Temkin R 2009 10th IEEE International Vacuum Electronics Conference Rome, Italy, April 28-30, 2009 p127

    [9]

    Tucek J C, Basten M A, Gallagher D A, Kreischer K E 2010 11th IEEE International Vacuum Electronics Conference Monterey, USA, May 18-20, 2010 p19

    [10]

    Basten M A, Tucek J C, Gallagher D A 2009 10th IEEE International Vacuum Electronics Conference Rome, Italy, April 28-30, 2009 p110

    [11]

    Basten M A, Tucek J C, Gallagher D A, Kreischer K E 2013 14th IEEE International Vacuum Electronics Conference Paris, France, May 21-23, 2013 p1

    [12]

    Xu X, Wei Y Y, Shen F, Duan Z Y, Gong Y B, Yin H R, Wang W X 2011 IEEE Eletron. Dev. Lett. 32 1152

    [13]

    Lai J Q, Wei Y Y, Liu Y, Huang M Z, Tang T, Wang W X, Gong Y B 2012 Chin. Phys. B 21 068403

    [14]

    Liu L W, Wei Y Y, Wang S M, Hou Y, Yin H R, Zhao G Q, Duan Z Y, Xu J, Gong Y B, Wang W X, Yang M H 2013 Chin. Phys. B 22 108401

    [15]

    Hu Q 2012 Acta Phys. Sin. 61 014101 (in Chinese) [胡权 2012 物理学报 61 014101]

    [16]

    Lai J Q, Wei Y Y, Xu X, Shen F, Liu Y, Liu Y, Huang M Z, Tang T, Gong Y B 2012 Acta Phys. Sin. 61 178501 (in Chinese) [赖剑强, 魏彦玉, 许雄, 沈飞, 刘洋, 刘漾, 黄民智, 唐涛, 宫玉彬 2012 物理学报 61 178501]

    [17]

    Li S, Wang J G, Tong C J, Wang G Q, Lu X C, Wang X F 2013 Acta Phys. Sin. 62 120703 (in Chinese) [李爽, 王建国, 童长江, 王光强, 陆希成, 王雪锋 2013 物理学报 62 120703]

    [18]

    Feng J J, Cai J, Wu X P, Hu Y F, Cui Y D, Dong R T, Liu J K, Chen J, Zhang X Q 2014 15th IEEE International Vacuum Electronics Conference Monterey, USA, April 22-24, 2014 p173

    [19]

    Gong Y B, Yin H R, Yue L N, Lu Z G, Wei Y Y, Feng J J, Duan Z Y, Xu X 2011 IEEE Trans. Plasma Sci. 39 847

    [20]

    Wang S J, Xue X Z, Wang Z C, Zhang S C, Guo J 2014 Chin. J. Vacuum Sci. Technol. 34 43 (in Chinese) [王书见, 薛谦忠, 王自成, 张世昌, 郭际2014真空科学与技术学报 34 43]

    [21]

    Dohler G, Gagne D, Gallagher D, Moats R 1987 IEDM Tech. Dig. 33 485

    [22]

    Ha H J, Jung S S, Park G S 1998 Int. J. Infrared Millim. Waves 19 1229

    [23]

    Curnow H J 1965 IEEE Trans. Microw. Theory Tech. 13 671

    [24]

    Carter R G, Liu S K 1986 IEE Proc. H, Microw. Antenn. Propag. 133 330

    [25]

    Booske J H, Converse M C, Kory C L, Chevalier C T, Gallagher D A, Kreischer K E, Heinen V O, Bhattacharjee S 2005 IEEE Trans. Electron Dev. 52 685

    [26]

    Marcuvitz L 1986 Waveguide Handbook (London: Peter Peregrinus) p365

  • [1] 罗积润, 唐彦娜, 樊宇, 彭澍源, 薛谦忠. 分布损耗加载回旋行波管多模稳态注波互作用理论与比较证实. 物理学报, 2018, 67(1): 018402. doi: 10.7498/aps.67.20171831
    [2] 王淦平, 金晓, 黄华, 刘振帮. 强流相对论多注电子束在空心圆柱波导中的漂移. 物理学报, 2017, 66(4): 044102. doi: 10.7498/aps.66.044102
    [3] 薛智浩, 刘濮鲲, 杜朝海. W波段螺旋波纹波导回旋行波管注波互作用的非线性分析. 物理学报, 2014, 63(8): 080201. doi: 10.7498/aps.63.080201
    [4] 彭澍源, 王秋实, 张兆传, 罗积润. 回旋行波管多模稳态理论及初步应用. 物理学报, 2014, 63(20): 208401. doi: 10.7498/aps.63.208401
    [5] 颜卫忠, 胡玉禄, 李建清, 杨中海, 田云先, 李斌. 基于三端口网络模型的折叠波导行波管注波互作用理论研究. 物理学报, 2014, 63(23): 238403. doi: 10.7498/aps.63.238403
    [6] 张开春, 吴振华. 亚太赫兹波折叠波导扩展互作用振荡器研究. 物理学报, 2013, 62(2): 024103. doi: 10.7498/aps.62.024103
    [7] 白春江, 李建清, 胡玉禄, 杨中海, 李斌. 利用等效电路模型计算耦合腔行波管注-波互作用. 物理学报, 2012, 61(17): 178401. doi: 10.7498/aps.61.178401
    [8] 刘维浩, 张雅鑫, 周俊, 龚森, 刘盛纲. 偏心电子注激励周期加载波导角向非对称模衍射辐射. 物理学报, 2012, 61(23): 234209. doi: 10.7498/aps.61.234209
    [9] 薛智浩, 刘濮鲲, 杜朝海, 李铮迪. W波段螺旋波纹波导回旋行波管注波互作用的非线性分析. 物理学报, 2012, 61(17): 170201. doi: 10.7498/aps.61.170201
    [10] 秦奋, 王冬, 陈代兵, 文杰. L波段高阶模抑制型磁绝缘线振荡器研究. 物理学报, 2012, 61(9): 094101. doi: 10.7498/aps.61.094101
    [11] 殷海荣, 徐进, 岳玲娜, 宫玉彬, 魏彦玉. 一种折叠波导行波管大信号互作用理论. 物理学报, 2012, 61(24): 244106. doi: 10.7498/aps.61.244106
    [12] 胡权. 变周期大结构低压工作折叠波导行波管的理论与模拟研究. 物理学报, 2012, 61(1): 014101. doi: 10.7498/aps.61.014101
    [13] 易红霞, 肖刘, 刘濮鲲, 郝保良, 李飞, 李国超. 基于电子注可回收能力的空间行波管慢波结构的优化设计. 物理学报, 2011, 60(6): 068403. doi: 10.7498/aps.60.068403
    [14] 彭维峰, 胡玉禄, 杨中海, 李建清, 陆麒如, 李斌. 螺旋线行波管注波互作用时域理论. 物理学报, 2010, 59(12): 8478-8483. doi: 10.7498/aps.59.8478
    [15] 何俊, 魏彦玉, 宫玉彬, 段兆云, 王文祥. Ka波段曲折双脊波导行波管的研究. 物理学报, 2010, 59(4): 2843-2849. doi: 10.7498/aps.59.2843
    [16] 何俊, 魏彦玉, 宫玉彬, 段兆云, 路志刚, 王文祥. 脊加载曲折波导行波管注波互作用的线性理论研究. 物理学报, 2010, 59(9): 6659-6665. doi: 10.7498/aps.59.6659
    [17] 高鹏, Booske John H., 杨中海, 李斌, 徐立, 何俊, 宫玉彬, 田忠. 太赫兹折叠波导行波管再生反馈振荡器非线性理论与模拟. 物理学报, 2010, 59(12): 8484-8489. doi: 10.7498/aps.59.8484
    [18] 张长青, 宫玉彬, 魏彦玉, 王文祥. 介质加载折叠波导行波管的线性分析. 物理学报, 2010, 59(9): 6653-6658. doi: 10.7498/aps.59.6653
    [19] 郝保良, 肖刘, 刘濮鲲, 李国超, 姜勇, 易红霞, 周伟. 螺旋线行波管三维频域非线性注波互作用的计算. 物理学报, 2009, 58(5): 3118-3124. doi: 10.7498/aps.58.3118
    [20] 李建清, 莫元龙. 行波管中慢电磁行波与电子注非线性互作用普遍理论. 物理学报, 2006, 55(8): 4117-4122. doi: 10.7498/aps.55.4117
计量
  • 文章访问数:  6811
  • PDF下载量:  506
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-04
  • 修回日期:  2014-07-20
  • 刊出日期:  2014-12-05

/

返回文章
返回