搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双基地角时变下的逆合成孔径雷达越分辨单元徙动校正算法

郭宝锋 尚朝轩 王俊岭 高梅国 傅雄军

引用本文:
Citation:

双基地角时变下的逆合成孔径雷达越分辨单元徙动校正算法

郭宝锋, 尚朝轩, 王俊岭, 高梅国, 傅雄军

Correction of migration through resolution cell in bistatic inverse synthetic aperture radar in the presence of time-varying bistatic angle

Guo Bao-Feng, Shang Chao-Xuan, Wang Jun-Ling, Gao Mei-Guo, Fu Xiong-Jun
PDF
导出引用
  • 采用双基地逆合成孔径雷达距离-多普勒算法成像时, 目标尺寸较大或累积转角过大, 会引起越分辨单元徙动现象, 影响成像质量. 针对双基地角时变下逆合成孔径雷达成像的越分辨单元徙动问题, 提出了一种校正算法. 首先, 建立了双基地逆合成孔径雷达回波模型, 分析了越分辨单元徙动的产生机理, 并通过广义的Keystone变换实现了越距离单元徙动的校正, 同时消除了目标非匀速转动对成像的影响. 然后, 基于图像对比度最大准则估计了图像的等效旋转中心位置, 并对距离向绝对定标, 进而构造补偿相位项, 完成了越多普勒单元徙动的校正. 仿真实验结果表明, 此方法能够有效地校正双基地角时变下的越分辨单元徙动, 提高成像质量.
    When the size of target or the rotation angle is big, migration through resolution cell may occur in the bistatic inverse synthetic aperture radar (ISAR), which will affect the imaging quality. Aiming at the problem of migration through resolution cell of bistatic ISAR in the presence of time-varying bistatic angle, a correction algorithm is proposed in this paper. Firstly, the echo model of bistatic ISAR is built, and the mechanism of migration through resolution cell is analyzed. Migration through range cell may be corrected through the generalized Keystone transformation, and the effect of non-uniform rotation is eliminated at the same time. Then the rotating center is estimated according to the maximum criterion of image contrast, and the range bin is scaled absolutely. A phase compensation term is constructed and the correction of migration through Doppler cell is finished. Finally, the simulations are carried out and the results show that the method proposed in this paper can solve the problem of migration through resolution cell and improve the image quality.
    • 基金项目: 国家自然科学基金(批准号:61271373)和上海航天科技创新基金(批准号:SAST201240)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61271373) and the Shanghai Aerospace Science and Technology Innovation Foundation, China (Grant No. SAST201240).
    [1]

    Yang Z Q, Zhang Y S, Luo Y J 1998 Bistatic (Multistatic) Radar System (Beijing: Defense Industry Press) pp14, 15 (in Chinese) [杨振起, 张永顺, 骆永军1998双(多)基地雷达系统(北京: 国防工业出版社)第14, 15页]

    [2]

    Ji W J, Tong C M 2013 Chin. Phys. B 22 020301

    [3]

    Zhang Y M, Wang Y H, Zhao C F 2010 Chin. Phys. B 19 084103

    [4]

    Ma C Z, Yeo T S, Guo Q, Wei P J 2012 IEEE Trans. Geosci. Remote Sens. 50 3859

    [5]

    Peng S B, Xu J, Meng C Z, Yang J, Peng Y N 2013 IET International Radar Conference Xi'an, China, April 14-16, 2013 p1

    [6]

    Bai X R, Zhou F, Xing M D, Bao Z 2010 IEEE Trans. Geosci. Remote Sens. Lett. 7 430

    [7]

    Fabrice C, Ali K, Alexandre B 2006 IEEE Trans. Antenn. Propag. 54 3529

    [8]

    Ma C, Gu H, Su W M, Li C Z 2014 Acta Phys. Sin. 63 028403 (in Chinese) [马超, 顾红, 苏卫民, 李传中 2014 物理学报 63 028403]

    [9]

    Pan X Y, Wang W, Feng D J, Liu Y C, Fu Q X, Wang G Y 2014 IET Radar Sonar Navig. 8 173

    [10]

    Zhu R F, Luo Y, Zhang Q 2011 Modern Radar 33 34 (in Chinese) [朱仁飞, 罗迎, 张群 2011 现代雷达 33 34]

    [11]

    Xing M D, Wu R, Bao Z 2005 IEE Proc. Radar Sonar Navig. 152 58

    [12]

    Zheng P, Jing X J, Sun S L, Huang H 2012 3rd IEEE International Conference on Network Infrastructure and Digital Content Beijing, China, September 21-23, 2012 p562

    [13]

    Zhu X P, Zhang Q, Zhu R F 2009 2nd Asian-Pacific Conference on Synthetic Aperture Radar Xi'an, China, October 26-30, 2009 p977

    [14]

    Zhang L, Li H L, Qiao Z J, Xing M D, Bao Z 2013 IEEE Trans. Geosci. Remote Sens. Lett. 10 1394

    [15]

    Horvath M S, Gorham L A, Rigling B D 2013 IEEE Trans. Aerosp. Electron. Syst. 49 1402

    [16]

    Wang Y, Li J W, Chen J, Xu H P, Sun B 2014 IEEE Trans. Geosci. Remote Sens. 52 640

    [17]

    Wang W Q, Cai J Y 2010 IEEE Antenn. Wireless Propag. Lett. 9 307

    [18]

    López-Dekker P, Mallorquí J J, Serra-Morales P, Sanz-Maros J 2008 IEEE Trans. Geosci. Remote Sens. 46 3459

    [19]

    Krieger G, de Zan F 2014 IEEE Trans. Geosci. Remote Sens. 52 1480

    [20]

    Bao Z, Xing M D, Wang T 2010 Radar Imaging Technology (Beijing: Publishing House of Electronics Industry) pp243-249 (in Chinese) [保铮, 邢孟道, 王彤2010雷达成像技术(北京: 电子工业出版社)第243–249页]

    [21]

    Ye C M, Xu J, Zuo Y, Peng Y N, Wang X T 2009 J. Tsinghua Univ. (Sci. Technol. Ed.) 49 1205 (in Chinese) [叶春茂, 许稼, 左渝, 彭应宁, 王秀坛 2009 清华大学学报 (自然科学版) 49 1205]

    [22]

    Dong J, Shang C X, Gao M G 2012 J. Electron. Inform. Technol. 32 1855 (in Chinese) [董健, 尚朝轩, 高梅国 2012 电子与信息学报 32 1855]

  • [1]

    Yang Z Q, Zhang Y S, Luo Y J 1998 Bistatic (Multistatic) Radar System (Beijing: Defense Industry Press) pp14, 15 (in Chinese) [杨振起, 张永顺, 骆永军1998双(多)基地雷达系统(北京: 国防工业出版社)第14, 15页]

    [2]

    Ji W J, Tong C M 2013 Chin. Phys. B 22 020301

    [3]

    Zhang Y M, Wang Y H, Zhao C F 2010 Chin. Phys. B 19 084103

    [4]

    Ma C Z, Yeo T S, Guo Q, Wei P J 2012 IEEE Trans. Geosci. Remote Sens. 50 3859

    [5]

    Peng S B, Xu J, Meng C Z, Yang J, Peng Y N 2013 IET International Radar Conference Xi'an, China, April 14-16, 2013 p1

    [6]

    Bai X R, Zhou F, Xing M D, Bao Z 2010 IEEE Trans. Geosci. Remote Sens. Lett. 7 430

    [7]

    Fabrice C, Ali K, Alexandre B 2006 IEEE Trans. Antenn. Propag. 54 3529

    [8]

    Ma C, Gu H, Su W M, Li C Z 2014 Acta Phys. Sin. 63 028403 (in Chinese) [马超, 顾红, 苏卫民, 李传中 2014 物理学报 63 028403]

    [9]

    Pan X Y, Wang W, Feng D J, Liu Y C, Fu Q X, Wang G Y 2014 IET Radar Sonar Navig. 8 173

    [10]

    Zhu R F, Luo Y, Zhang Q 2011 Modern Radar 33 34 (in Chinese) [朱仁飞, 罗迎, 张群 2011 现代雷达 33 34]

    [11]

    Xing M D, Wu R, Bao Z 2005 IEE Proc. Radar Sonar Navig. 152 58

    [12]

    Zheng P, Jing X J, Sun S L, Huang H 2012 3rd IEEE International Conference on Network Infrastructure and Digital Content Beijing, China, September 21-23, 2012 p562

    [13]

    Zhu X P, Zhang Q, Zhu R F 2009 2nd Asian-Pacific Conference on Synthetic Aperture Radar Xi'an, China, October 26-30, 2009 p977

    [14]

    Zhang L, Li H L, Qiao Z J, Xing M D, Bao Z 2013 IEEE Trans. Geosci. Remote Sens. Lett. 10 1394

    [15]

    Horvath M S, Gorham L A, Rigling B D 2013 IEEE Trans. Aerosp. Electron. Syst. 49 1402

    [16]

    Wang Y, Li J W, Chen J, Xu H P, Sun B 2014 IEEE Trans. Geosci. Remote Sens. 52 640

    [17]

    Wang W Q, Cai J Y 2010 IEEE Antenn. Wireless Propag. Lett. 9 307

    [18]

    López-Dekker P, Mallorquí J J, Serra-Morales P, Sanz-Maros J 2008 IEEE Trans. Geosci. Remote Sens. 46 3459

    [19]

    Krieger G, de Zan F 2014 IEEE Trans. Geosci. Remote Sens. 52 1480

    [20]

    Bao Z, Xing M D, Wang T 2010 Radar Imaging Technology (Beijing: Publishing House of Electronics Industry) pp243-249 (in Chinese) [保铮, 邢孟道, 王彤2010雷达成像技术(北京: 电子工业出版社)第243–249页]

    [21]

    Ye C M, Xu J, Zuo Y, Peng Y N, Wang X T 2009 J. Tsinghua Univ. (Sci. Technol. Ed.) 49 1205 (in Chinese) [叶春茂, 许稼, 左渝, 彭应宁, 王秀坛 2009 清华大学学报 (自然科学版) 49 1205]

    [22]

    Dong J, Shang C X, Gao M G 2012 J. Electron. Inform. Technol. 32 1855 (in Chinese) [董健, 尚朝轩, 高梅国 2012 电子与信息学报 32 1855]

  • [1] 谢前朋, 潘小义, 陈吉源, 肖顺平. 基于长电偶极子和大磁圆环的新型电磁矢量传感器双基地多输入多输出雷达角度和极化参数联合估计. 物理学报, 2021, 70(4): 044302. doi: 10.7498/aps.70.20201111
    [2] 王童, 童创明, 李西敏, 李昌泽. 分形粗糙面合成孔径雷达成像研究. 物理学报, 2016, 65(7): 070301. doi: 10.7498/aps.65.070301
    [3] 赵现斌, 严卫, 王迎强, 陆文, 马烁. 基于海面散射模型的全极化合成孔径雷达海洋环境探测关键技术参数设计仿真研究. 物理学报, 2014, 63(21): 218401. doi: 10.7498/aps.63.218401
    [4] 朱磊, 韩天琪, 水鹏朗, 卫建华, 顾梅花. 一种抑制合成孔径雷达图像相干斑的各向异性扩散滤波方法. 物理学报, 2014, 63(17): 179502. doi: 10.7498/aps.63.179502
    [5] 姜祝辉, 周晓中, 游小宝, 易欣, 黄为权. 合成孔径雷达反演海面风场变分模型分析. 物理学报, 2014, 63(14): 148401. doi: 10.7498/aps.63.148401
    [6] 马超, 顾红, 苏卫民, 李传中. 改进的双曲等效法用于双站合成孔径雷达前视成像. 物理学报, 2014, 63(2): 028403. doi: 10.7498/aps.63.028403
    [7] 黄聪, 孙大军, 张殿伦, 滕婷婷. 双基地多输入多输出虚拟阵列的稳健低旁瓣波束优化技术. 物理学报, 2014, 63(18): 188401. doi: 10.7498/aps.63.188401
    [8] 艾未华, 严卫, 赵现斌, 刘文俊, 马烁. C波段机载合成孔径雷达海面风场反演新方法. 物理学报, 2013, 62(6): 068401. doi: 10.7498/aps.62.068401
    [9] 孙增国. 高分辨率合成孔径雷达图像的Gamma分布下最大后验概率降斑算法. 物理学报, 2013, 62(18): 180701. doi: 10.7498/aps.62.180701
    [10] 李金才, 黄思训, 彭宇行, 张卫民. 一种用于合成孔径雷达图像相干斑抑制的双边滤波参数配置新方法. 物理学报, 2012, 61(11): 119501. doi: 10.7498/aps.61.119501
    [11] 李金才, 黄斌, 彭宇行. 一种改进的用于合成孔径雷达图像相干斑抑制的双边滤波参数配置方法. 物理学报, 2012, 61(18): 189501. doi: 10.7498/aps.61.189501
    [12] 姬伟杰, 童创明. 二维海面上舰船目标电磁散射及合成孔径雷达成像技术研究. 物理学报, 2012, 61(16): 160301. doi: 10.7498/aps.61.160301
    [13] 赵现斌, 孔毅, 严卫, 艾未华, 刘文俊. 机载合成孔径雷达海面风场探测辐射定标精度要求研究. 物理学报, 2012, 61(14): 148404. doi: 10.7498/aps.61.148404
    [14] 艾未华, 孔毅, 赵现斌. 基于小波的多极化机载合成孔径雷达海面风向反演. 物理学报, 2012, 61(14): 148403. doi: 10.7498/aps.61.148403
    [15] 姜祝辉, 黄思训, 何然, 周晨腾. 合成孔径雷达资料反演海面风场的正则化方法研究. 物理学报, 2011, 60(6): 068401. doi: 10.7498/aps.60.068401
    [16] 姜祝辉, 黄思训, 石汉青, 张伟, 王彪. 合成孔径雷达图像反演海面风向新方法的研究. 物理学报, 2011, 60(10): 108402. doi: 10.7498/aps.60.108402
    [17] 孙增国, 韩崇昭. 基于区域分类、自适应滑动窗和结构检测的合成孔径雷达图像联合降斑算法. 物理学报, 2010, 59(5): 3210-3220. doi: 10.7498/aps.59.3210
    [18] 孙增国, 韩崇昭. 基于拖尾分布的高分辨率合成孔径雷达图像建模. 物理学报, 2010, 59(2): 998-1008. doi: 10.7498/aps.59.998
    [19] 惠娟, 王自娟, 惠俊英, 何文翔. 双基地混响平均强度理论及仿真预报. 物理学报, 2009, 58(8): 5491-5500. doi: 10.7498/aps.58.5491
    [20] 孙增国, 韩崇昭. 基于斑点噪声的拖尾Rayleigh分布的合成孔径雷达图像最大后验概率降噪. 物理学报, 2007, 56(8): 4565-4570. doi: 10.7498/aps.56.4565
计量
  • 文章访问数:  6786
  • PDF下载量:  365
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-06
  • 修回日期:  2014-07-13
  • 刊出日期:  2014-12-05

/

返回文章
返回