搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热处理对钙钛矿锰氧化物La0.95Sr0.05MnO3离子价态和磁结构的影响

武力乾 齐伟华 李雨辰 李世强 李壮志 唐贵德 葛兴烁 丁丽莉

引用本文:
Citation:

热处理对钙钛矿锰氧化物La0.95Sr0.05MnO3离子价态和磁结构的影响

武力乾, 齐伟华, 李雨辰, 李世强, 李壮志, 唐贵德, 葛兴烁, 丁丽莉

Influence of thermal treatment on the ionic valence and the magnetic structure of perovskite manganites La0.95Sr0.05MnO3

Wu Li-Qian, Qi Wei-Hua, Li Yu-Chen, Li Shi-Qiang, Li Zhuang-Zhi, Xue Li-Chao, Ge Xing-Shuo, Ding Li-Li
PDF
导出引用
  • 对于磁性氧化物的磁有序, 传统的观点用超交换相互作用(SE)和双交换相互作用(DE) 模型进行解释, 其出发点都建立在全部氧离子是-2价的基础上. 例如, 对于LaMnO3, 认为其中的La和Mn都处于+3价, 用SE模型解释相邻Mn3+离子间的反铁磁序; 当以二价的Sr离子替代一部分La离子后, 认为等量的Mn3+离子变为Mn4+离子, 用DE模型解释相邻Mn3+和Mn4+离子间的铁磁序. 然而, 事实上在氧化物中存在一部分负一价氧离子. Cohen [Nature 358 136]利用密度泛函理论计算了BaTiO3的价电子态密度, 结果得到只有Ba离子的化合价与传统观点相同, 为+2 价; 而Ti和O分别为+2.89价和-1.63价, 不是传统观点的+4价和-2价, 但是与多年来关于氧化物电离度的研究[Rev. Mod. Phys. 42 317] 和X 射线光电子谱(XPS)的研究结果相符合. 本文经过不同热处理条件制备了名义成分为La0.95Sr0.05MnO3 的三个样品, 通过对样品的XPS分析, 发现样品中不存在Mn4+离子, 只存在Mn2+ 和Mn3+离子, 平均价态随热处理程序的增加而升高. 尽管三个样品有相同的晶体结构, 但磁矩明显不同. 对于这样的性能, 不能用SE和DE模型解释其磁结构. 利用本课题组最近在研究尖晶石结构铁氧体磁有序过程中提出的O 2p巡游电子模型解释了这种现象, 利用样品在10 K的磁矩估算出的Mn离子平均价态变化趋势与XPS分析结果一致. O 2p巡游电子模型的出发点建立在氧化物中存在一部分负一价氧离子的基础上, 这是其与SE和DE模型的根本区别.
    In traditional views, the magnetic ordering of oxides may be explained using magnetic superexchange (SE) or double exchange (DE) interaction models. Both models are based on an assumption that the valences of all oxygen ions be -2. For example, both La and Mn in LaMnO3 are assumed to be trivalent, in which antiferromagnetic spin structure is explained using the SE interaction between Mn3+ cations mediated by oxygen anions. In La1-xSrxMnO3, there exists a part of Mn4+ cations with the content ratio of Mn4+/Mn3+ being x/(1-x), in which spin structure and electronic transport properties are explained by DE interaction. However, there is a part of monovalent oxygen ions existing in oxides. Cohen [Nature 358 136] has calculated the densities of states for valence electrons in the perovskite oxide BaTiO3 using density functional theory. Results indicate that the average valence of Ba is +2, being the same as that in the traditional one, but the average valences of Ti and O are +2.89 and -1.63 respectively, agreeing with the results obtained using ionicity investigation [Rev. Mod. Phys. 42 317] and X-ray photoelectron spectra (XPS) analysis, but different from the conventional results +4 and -2. In this paper, three samples with the nominal composition La0.95Sr0.05MnO3 are prepared by different thermal-treatments. Likewise, there are only Mn2+ and Mn3+ cations, but no Mn4+ cations in La0.95Sr0.05MnO3, a result obtained by XPS analysis, and the average valence of Mn in La0.95Sr0.05MnO3 samples increases with increaseing thermal-treatment. Although the crystal structures of the samples are the same, the magnetic moments per formula are obviously different. This magnetic structure cannot be explained using the conventional SE and DE interaction models. Using the O 2p itinerant electron model for spinel ferrites proposed recently by our group, we can explain this magnetic structure. The variation trend of the average valences of Mn cations calculated using the magnetic moments per formula of the samples at 10 K, is in accordance with the experiment results of XPS. The O 2p itinerant electron model is based on an assumption that there is a part of monovalent oxygen ions in the oxides, which is the fundamental difference from SE and DE interaction models.
      通信作者: 唐贵德, tanggd@mail.hebtu.edu.cn.
    • 基金项目: 国家自然科学基金(批准号: 11174069)、河北省自然科学基金(批准号: A2015205111)和河北省教育厅青年基金(批准号: QN20131008)资助的课题.
      Corresponding author: Xue Li-Chao, tanggd@mail.hebtu.edu.cn.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11174069), the Natural Science Foundation of Hebei Province, China (Grant No. A2015205111), and the Young Scholar Science Foundation of the Education Department of Hebei Province, China (Grant No. QN20131008).
    [1]

    Helmolt R V, Wecker J, Holzapfel B, Schultz L, Samwer K 1993 Phys. Rev. Lett. 71 2331

    [2]

    Urushibara A, Moritomo Y, Arima T, Asamitsu A, Kido G, Tokura Y 1995 Phys. Rev. B 51 14103

    [3]

    Tokura Y, Tomioka Y 1999 J. Magn. Magn. Mater. 200 1

    [4]

    Salamon M B, Jaime M 2001 Rev. Moder. Phys. 73 583

    [5]

    Sun Y, Tong W, Xu X J, Zhang Y H 2001 Appl. Phys. Lett. 78 643

    [6]

    Lu Y, Li Q A, Di N L, Li R W, Ma X, Kou Z Q, Cheng Z H 2003 Chin. Phys. 12 1301

    [7]

    Tang G D, Hou D L, Chen W, Zhao X, Qi W H 2007 Appl. Phys. Lett. 90 144101

    [8]

    Tang G D, Hou D L, Li Z Z, Zhao X, Qi W H, Liu S P, Zhao F W 2006 Appl. Phys. Lett. 89 261919

    [9]

    Tang G D, Hou D L, Chen W, Hao P, Liu G H, Liu S P, Zhang X L, Xu L Q 2007 Appl. Phys. Lett. 91 152503

    [10]

    Tang G D, Liu S P, Zhao X, Zhang Y G, Ji D H, Li Y F, Qi W H, Chen W, Hou D L 2009 Appl. Phys. Lett. 95 121906

    [11]

    Liu S P, Tang G D, Li Z Z, Qi W H, Ji D H, Li Y F, Chen W, Hou D L 2011 J. Alloy Comp. 509 2320

    [12]

    Jiang K, Gong S K 2009 Chin.Phys.B 18 3035

    [13]

    Hu L, Sun Y P, Wang B, Luo X, Sheng Z G, Zhu X B, Song W H, Yang Z R, Dai J M 2010 Chin. Phys. Lett. 27 097504

    [14]

    Hong F, Cheng Z X, Wang J L, Wang X L, Dou S X 2012 Appl. Phys. Lett. 101 102411

    [15]

    Liu N, Yan G Q, Zhu G, Guo H Y 2012 Rare Metals 31 135

    [16]

    Yang H, Qi W H, Ji D H, Shang Z F, Zhang X Y, Xu J, Lang L L, Tang G D 2014 Acta Phys. Sin. 63 087503 (in Chinese) [杨虹, 齐伟华, 纪登辉, 尚志丰, 张晓云, 徐静, 郎莉莉, 唐贵德 2014 物理学报 63 087503]

    [17]

    Khan M H, Pal S, Bose E 2015 J. Magn. Magn. Mater. 391 140

    [18]

    Jiang L N, Zhang Y B, Dong S L 2015 Acta Phys. Sin. 64 147104 (in Chinese) [姜丽娜, 张玉滨, 董顺乐 2015 物理学报 64 147104]

    [19]

    Jonker G H, Van Santen J H 1950 Physica 16 337

    [20]

    Shannon R D 1976 Acta Cryst. A 32 751

    [21]

    Chikazumi S 1997 Physics of Ferromagnetism 2e (Oxford University Press), p100-180

    [22]

    Cohen R E 1992 Nature 358 136

    [23]

    Dupin J C, Gonbeau D, Vinatier P, Levasseur A 2000 Phys. Chem. Chem. Phys. 2 1319

    [24]

    Wu L Q, Li Y C, Li S Q, Li Z Z, Tang G D, Qi W H, Xue L C, Ge X S, Ding L L 2015 AIP Advances 5 097210

    [25]

    Phillips J C 1970 Rev. Mod. Phys. 42 317

    [26]

    Thomas J, Pollini I 1985 Phys. Rev. B 32 2522

    [27]

    Chelikowsky J R, Burdett J K 1986 Phys. Rev. Lett. 56 961

    [28]

    Garca A, Cohen M L 1993 Phys. Rev. B 47 4215

    [29]

    Guo Y Y, Kuo C K, Nicholson P S 1999 Solid State Ionics 123 225

    [30]

    Liu S P, Tang G D, Hao P, Xu L Q, Zhang Y G, Qi W H, Zhao X, Hou D L, Chen W 2009 J. Appl. Phys. 105 013905

    [31]

    Liu S P, Zhang Y G, Tang G D, Qi W H, Ji D H, Li Y F, Liu G H, Xie Y, Chen W, Hou D L 2010 Phys. Stat. Sol. 207 2437

    [32]

    Liu S P, Xie Y, Xie J, Tang G D 2011 J. Appl. Phys. 110 123714

    [33]

    Ji D H, Tang G D, Li Z Z, Han Q J, Hou X, Bian R R, Liu S R 2012 J. Appl. Phys. 111 113902

    [34]

    Liu S P, Xie Y, Tang G D, Li Z Z, Ji D H, Li Y F, Hou D L 2012 J. Magn.Magn.Mater. 324 1992

    [35]

    Seah M P, Brown M T 1998 Journal of Electron Spectroscopy and Related Phenomena 95 71

    [36]

    Sunding M F Hadidi K, Diplas S, Lovvik O M, Norby T E, Gunns A E 2011 Journal of Electron Spectroscopy and Related Phenomena 184 399

    [37]

    Cui B, Lin H, Liu Y Z, Li J B, Sun P, Zhao X C, Liu C J 2009 J. Phys. Chem. C 113 14083

    [38]

    Zener C 1951 Phys. Rev. 82 403

    [39]

    Tang G D, Han Q J, Xu J, Ji D H, Qi W H, Li Z Z, Shang Z F, Zhang X Y 2014 Phys. B 438 91

    [40]

    Shang Z F, Qi W H, Ji D H, Xu J, Tang G D, Zhang X Y, Li Z Z, Lang L L 2014 Chin. Phys. B 23 107503

    [41]

    Lang L L, Xu J, Qi W H, Li Z Z, Tang G D, Shang Z F, Zhang X Y, Wu L Q, Xue L C 2014 J. Appl. Phys. 116 123901

    [42]

    Zhang X Y, Xu J, Li Z Z, Qi W H, Tang G D, Shang Z F, Ji D H, Lang L L 2014 Phys. B 446 92

    [43]

    Lang L L, Xu J, Li Z Z, Qi W H, Tang G D, Shang Z F, Zhang X Y, Wu L Q, Xue L C 2015 Phys. B 462 47

    [44]

    Xu J, Ji D H, Li Z Z, Qi W H, Tang G D, Zhang X Y, Shang Z F, Lang L L 2015 Physica Status Solidi B 252 411

    [45]

    Xu J, Qi W H, Ji D H, Li Z Z, Tang G D, Zhang X Y, Shang Z F, Lang L L 2015 Acta Phys. Sin. 64 017501 (in Chinese) [徐静, 齐伟华, 纪登辉, 李壮志, 唐贵德, 张晓云, 尚志丰, 朗莉莉 2015 物理学报 64 017501]

    [46]

    Xu J, Ma L, Li Z Z, Lang L L, Qi W H, Tang G D, Wu L Q, Xue L C, Wu G H 2015 Physica Status Solidi B 252 2820

    [47]

    Chen C W 1977 Magnetism, Metallurgy of soft magnetic materials (North- Holland Publishing Company, 1977)

    [48]

    Lee H S, Park C S, Park H H 2014 Appl. Phys. Lett. 104 191604

  • [1]

    Helmolt R V, Wecker J, Holzapfel B, Schultz L, Samwer K 1993 Phys. Rev. Lett. 71 2331

    [2]

    Urushibara A, Moritomo Y, Arima T, Asamitsu A, Kido G, Tokura Y 1995 Phys. Rev. B 51 14103

    [3]

    Tokura Y, Tomioka Y 1999 J. Magn. Magn. Mater. 200 1

    [4]

    Salamon M B, Jaime M 2001 Rev. Moder. Phys. 73 583

    [5]

    Sun Y, Tong W, Xu X J, Zhang Y H 2001 Appl. Phys. Lett. 78 643

    [6]

    Lu Y, Li Q A, Di N L, Li R W, Ma X, Kou Z Q, Cheng Z H 2003 Chin. Phys. 12 1301

    [7]

    Tang G D, Hou D L, Chen W, Zhao X, Qi W H 2007 Appl. Phys. Lett. 90 144101

    [8]

    Tang G D, Hou D L, Li Z Z, Zhao X, Qi W H, Liu S P, Zhao F W 2006 Appl. Phys. Lett. 89 261919

    [9]

    Tang G D, Hou D L, Chen W, Hao P, Liu G H, Liu S P, Zhang X L, Xu L Q 2007 Appl. Phys. Lett. 91 152503

    [10]

    Tang G D, Liu S P, Zhao X, Zhang Y G, Ji D H, Li Y F, Qi W H, Chen W, Hou D L 2009 Appl. Phys. Lett. 95 121906

    [11]

    Liu S P, Tang G D, Li Z Z, Qi W H, Ji D H, Li Y F, Chen W, Hou D L 2011 J. Alloy Comp. 509 2320

    [12]

    Jiang K, Gong S K 2009 Chin.Phys.B 18 3035

    [13]

    Hu L, Sun Y P, Wang B, Luo X, Sheng Z G, Zhu X B, Song W H, Yang Z R, Dai J M 2010 Chin. Phys. Lett. 27 097504

    [14]

    Hong F, Cheng Z X, Wang J L, Wang X L, Dou S X 2012 Appl. Phys. Lett. 101 102411

    [15]

    Liu N, Yan G Q, Zhu G, Guo H Y 2012 Rare Metals 31 135

    [16]

    Yang H, Qi W H, Ji D H, Shang Z F, Zhang X Y, Xu J, Lang L L, Tang G D 2014 Acta Phys. Sin. 63 087503 (in Chinese) [杨虹, 齐伟华, 纪登辉, 尚志丰, 张晓云, 徐静, 郎莉莉, 唐贵德 2014 物理学报 63 087503]

    [17]

    Khan M H, Pal S, Bose E 2015 J. Magn. Magn. Mater. 391 140

    [18]

    Jiang L N, Zhang Y B, Dong S L 2015 Acta Phys. Sin. 64 147104 (in Chinese) [姜丽娜, 张玉滨, 董顺乐 2015 物理学报 64 147104]

    [19]

    Jonker G H, Van Santen J H 1950 Physica 16 337

    [20]

    Shannon R D 1976 Acta Cryst. A 32 751

    [21]

    Chikazumi S 1997 Physics of Ferromagnetism 2e (Oxford University Press), p100-180

    [22]

    Cohen R E 1992 Nature 358 136

    [23]

    Dupin J C, Gonbeau D, Vinatier P, Levasseur A 2000 Phys. Chem. Chem. Phys. 2 1319

    [24]

    Wu L Q, Li Y C, Li S Q, Li Z Z, Tang G D, Qi W H, Xue L C, Ge X S, Ding L L 2015 AIP Advances 5 097210

    [25]

    Phillips J C 1970 Rev. Mod. Phys. 42 317

    [26]

    Thomas J, Pollini I 1985 Phys. Rev. B 32 2522

    [27]

    Chelikowsky J R, Burdett J K 1986 Phys. Rev. Lett. 56 961

    [28]

    Garca A, Cohen M L 1993 Phys. Rev. B 47 4215

    [29]

    Guo Y Y, Kuo C K, Nicholson P S 1999 Solid State Ionics 123 225

    [30]

    Liu S P, Tang G D, Hao P, Xu L Q, Zhang Y G, Qi W H, Zhao X, Hou D L, Chen W 2009 J. Appl. Phys. 105 013905

    [31]

    Liu S P, Zhang Y G, Tang G D, Qi W H, Ji D H, Li Y F, Liu G H, Xie Y, Chen W, Hou D L 2010 Phys. Stat. Sol. 207 2437

    [32]

    Liu S P, Xie Y, Xie J, Tang G D 2011 J. Appl. Phys. 110 123714

    [33]

    Ji D H, Tang G D, Li Z Z, Han Q J, Hou X, Bian R R, Liu S R 2012 J. Appl. Phys. 111 113902

    [34]

    Liu S P, Xie Y, Tang G D, Li Z Z, Ji D H, Li Y F, Hou D L 2012 J. Magn.Magn.Mater. 324 1992

    [35]

    Seah M P, Brown M T 1998 Journal of Electron Spectroscopy and Related Phenomena 95 71

    [36]

    Sunding M F Hadidi K, Diplas S, Lovvik O M, Norby T E, Gunns A E 2011 Journal of Electron Spectroscopy and Related Phenomena 184 399

    [37]

    Cui B, Lin H, Liu Y Z, Li J B, Sun P, Zhao X C, Liu C J 2009 J. Phys. Chem. C 113 14083

    [38]

    Zener C 1951 Phys. Rev. 82 403

    [39]

    Tang G D, Han Q J, Xu J, Ji D H, Qi W H, Li Z Z, Shang Z F, Zhang X Y 2014 Phys. B 438 91

    [40]

    Shang Z F, Qi W H, Ji D H, Xu J, Tang G D, Zhang X Y, Li Z Z, Lang L L 2014 Chin. Phys. B 23 107503

    [41]

    Lang L L, Xu J, Qi W H, Li Z Z, Tang G D, Shang Z F, Zhang X Y, Wu L Q, Xue L C 2014 J. Appl. Phys. 116 123901

    [42]

    Zhang X Y, Xu J, Li Z Z, Qi W H, Tang G D, Shang Z F, Ji D H, Lang L L 2014 Phys. B 446 92

    [43]

    Lang L L, Xu J, Li Z Z, Qi W H, Tang G D, Shang Z F, Zhang X Y, Wu L Q, Xue L C 2015 Phys. B 462 47

    [44]

    Xu J, Ji D H, Li Z Z, Qi W H, Tang G D, Zhang X Y, Shang Z F, Lang L L 2015 Physica Status Solidi B 252 411

    [45]

    Xu J, Qi W H, Ji D H, Li Z Z, Tang G D, Zhang X Y, Shang Z F, Lang L L 2015 Acta Phys. Sin. 64 017501 (in Chinese) [徐静, 齐伟华, 纪登辉, 李壮志, 唐贵德, 张晓云, 尚志丰, 朗莉莉 2015 物理学报 64 017501]

    [46]

    Xu J, Ma L, Li Z Z, Lang L L, Qi W H, Tang G D, Wu L Q, Xue L C, Wu G H 2015 Physica Status Solidi B 252 2820

    [47]

    Chen C W 1977 Magnetism, Metallurgy of soft magnetic materials (North- Holland Publishing Company, 1977)

    [48]

    Lee H S, Park C S, Park H H 2014 Appl. Phys. Lett. 104 191604

  • [1] 王步升, 刘永. MnTe电子结构和磁性的第一性原理研究. 物理学报, 2016, 65(6): 066101. doi: 10.7498/aps.65.066101
    [2] 刘红艳, 柳祝红, 李歌天, 马星桥. Ga含量对Mn2-xNiGa1+x结构和磁性的影响. 物理学报, 2016, 65(4): 048102. doi: 10.7498/aps.65.048102
    [3] 姜恩海, 朱兴凤, 陈凌孚. Heusler合金Co2MnAl(100)表面电子结构、磁性和自旋极化的第一性原理研究. 物理学报, 2015, 64(14): 147301. doi: 10.7498/aps.64.147301
    [4] 王志国, 向俊尤, 徐宝, 万素磊, 鲁毅, 张雪峰, 赵建军. 钙钛矿锰氧化物(La1-xGdx)4/3Sr5/3Mn2O7 (x=0, 0.025) 磁性和输运性质研究. 物理学报, 2015, 64(6): 067501. doi: 10.7498/aps.64.067501
    [5] 何利民, 冀钰, 鲁毅, 吴鸿业, 张雪峰, 赵建军. 钙钛矿锰氧化物(La1-xEux)4/3Sr5/3Mn2O7(x=0, 0.15)的磁性和电性研究. 物理学报, 2014, 63(14): 147503. doi: 10.7498/aps.63.147503
    [6] 杨虹, 齐伟华, 纪登辉, 尚志丰, 张晓云, 徐静, 郎莉莉, 唐贵德. 钙钛矿锰氧化物La2/3Sr1/3FexMn1-xO3的结构与磁性研究. 物理学报, 2014, 63(8): 087503. doi: 10.7498/aps.63.087503
    [7] 潘敏, 黄整, 赵勇. 强关联效应下非磁性元素Ir掺杂的SmFeAsO电子结构理论研究. 物理学报, 2013, 62(21): 217401. doi: 10.7498/aps.62.217401
    [8] 杨育奇, 高庆庆, 李冠男. 组合结构化合物Ho2Ni7-xFex (x=03.0)的晶体结构、结构转变和磁性. 物理学报, 2013, 62(1): 016103. doi: 10.7498/aps.62.016103
    [9] 张贺, 骆军, 朱航天, 刘泉林, 梁敬魁, 饶光辉. Cu掺杂AgSbTe2化合物的相稳定、晶体结构及热电性能. 物理学报, 2012, 61(8): 086101. doi: 10.7498/aps.61.086101
    [10] 胡艳春, 王艳文, 张克磊, 王海英, 马恒, 路庆凤. 空穴掺杂Sr2FeMoO6的晶体结构及磁性研究. 物理学报, 2012, 61(22): 226101. doi: 10.7498/aps.61.226101
    [11] 罗礼进, 仲崇贵, 方靖淮, 赵永林, 周朋霞, 江学范. Heusler合金Mn2 NiAl的电子结构和磁性对四方畸变的响应及其压力响应. 物理学报, 2011, 60(12): 127502. doi: 10.7498/aps.60.127502
    [12] 文黎巍, 王玉梅, 裴慧霞, 丁俊. Sb系half-Heusler合金磁性及电子结构的第一性原理研究. 物理学报, 2011, 60(4): 047110. doi: 10.7498/aps.60.047110
    [13] 张富春, 张威虎, 董军堂, 张志勇. Cr掺杂ZnO纳米线的电子结构和磁性. 物理学报, 2011, 60(12): 127503. doi: 10.7498/aps.60.127503
    [14] 潘洪哲, 徐明, 陈丽, 孙媛媛, 王永龙. 单层正三角锯齿型石墨烯量子点的电子结构和磁性. 物理学报, 2010, 59(9): 6443-6449. doi: 10.7498/aps.59.6443
    [15] 徐本富, 杨传路, 童小菲, 王美山, 马晓光, 王德华. FenO+m(n+m=4)团簇的构型、电子结构特征和磁性. 物理学报, 2010, 59(11): 7845-7849. doi: 10.7498/aps.59.7845
    [16] 张瑜, 刘拥军, 刘先锋, 江学范. 双钙钛矿SrKFeWO6的电子结构与磁性. 物理学报, 2010, 59(5): 3432-3437. doi: 10.7498/aps.59.3432
    [17] 罗鸿志, 贾 琳, 李养贤, 孟凡斌, 申 江, 陈难先, 吴光恒, 杨伏明. (Nd1-xErx)3Fe25Cr4.0(0≤x≤1.0) 化合物的结构与磁性. 物理学报, 2005, 54(5): 2176-2182. doi: 10.7498/aps.54.2176
    [18] 伏广才, 李明星, 董 成, 郭 娟, 杨立红. KxCoO2·yH2O(x<0.2,y≤0.8)的晶体结构、输运及磁学性质. 物理学报, 2005, 54(12): 5713-5716. doi: 10.7498/aps.54.5713
    [19] 郭鸿涌, 刘宝丹, 唐宁, 罗鸿志, 李养贤, 杨伏明, 吴光恒. Co和稳定元素对Nd3(Fe,Co,M)29(M=Ti,V,Cr) 化合物结构和磁性的影响. 物理学报, 2004, 53(1): 189-193. doi: 10.7498/aps.53.189
    [20] 陈镇平, 张金仓, 程国生, 李喜贵, 章讯生. 金属氧化物超导陶瓷Y-123体系烧结过程与结构缺陷的正电子实验研究. 物理学报, 2001, 50(3): 550-555. doi: 10.7498/aps.50.550
计量
  • 文章访问数:  6932
  • PDF下载量:  265
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-07
  • 修回日期:  2015-10-29
  • 刊出日期:  2016-01-20

/

返回文章
返回