搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于反演场扩散消除的时间反演多目标成像技术

臧锐 王秉中 丁帅 龚志双

引用本文:
Citation:

基于反演场扩散消除的时间反演多目标成像技术

臧锐, 王秉中, 丁帅, 龚志双

Time reversal multi-target imaging technique based on eliminating the diffusion of the time reversal field

Zang Rui, Wang Bing-Zhong, Ding Shuai, Gong Zhi-Shuang
PDF
导出引用
  • 基于时间反演腔理论,分析了时间反演场存在的聚焦扩散现象.通过对该现象的分析,提出了利用Clean算法进行单频时间反演场扩散消除,进而实现时间反演多目标成像的技术.全波仿真结果表明,该技术能够消除时间反演场扩散的影响,利用单一频率信号实现多目标的成像.最后,分析了时间反演镜的选取对时间反演场的影响,并在此基础上,提出了非理想情况下相应的时间反演镜信号均衡算法,为时间反演多目标成像技术的实际应用提供了有效的支撑.
    Time reversal technique has the adaptive time-space focusing characteristics, which has been widely used in communication systems, imaging systems, and power combining systems. However, the ideal time reversal processing cannot be implemented in an actual imaging system and some diffusion phenomenon has been observed. In this paper, the diffusion phenomenon of the time reversal field in an imaging system is analyzed based on the time reversal cavity theory. Since the corresponding absorption source cannot be set in an imaging process, the time reversal field will continue to disperse after the convergence. Therefore, the field produced by the time reversal cavity will be similar to the sinc-function near the source. The diffusion field will result in mutual interference between the imaging targets. In a traditional time reversal multi-target imaging system, weaker targets can easily be concealed and artifacts may occur. In this paper, a multi-target imaging technique based on the elimination of the time reversal field diffusion is proposed. In order to eliminate the effect of the diffusion field, the Clean algorithm is used. The Clean algorithm is a de-convolution algorithm, which can effectively suppress the side lobe signal. By using the Clean algorithm in the time reversal imaging system, the interaction between multi-targets can be eliminated. Full-wave simulation shows a good performance of the proposed method. In practice, the time reversal mirrors are used to replace the time reversal cavity, for the fully closed time reversal cavity cannot be implemented. The effects of the time reversal mirrors have also been analyzed in this paper. The result shows that the positions of the time reversal mirrors have an significant influence on the reversed field distribution, which affects the Clean algorithm and the proposed imaging method. In order to eliminate the influence of time-reversal mirror position, an effective time reversal signal equalization algorithm is proposed. In the equalization algorithm, the amplitude of the time reversal signal in the time reversal mirrors is adjusted according to both the distance and the intensity. The proposed equalization algorithm can keep the time reversal field stable and provide effective support for the imaging method.
      通信作者: 王秉中, bzwang@uestc.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61331007,61361166008,61401065)和高等学校博士学科点专项科研基金(批准号:20120185130001)资助的课题.
      Corresponding author: Wang Bing-Zhong, bzwang@uestc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61331007, 61361166008, 61401065), and the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120185130001).
    [1]

    Fink M 1997 Phys. Today 50 34

    [2]

    Lerosey G, Rosny J, Tourin A, Derode A, Fink M 2006 Phys. Rev. Lett. 88 154101

    [3]

    Kong Q, Shi Q F, Yu G Z, Zhang M 2012 Chin. Phys. Lett. 29 024208

    [4]

    Wang B Z, Zang R, Zhou H C 2013 J. Microwaves 29 25 (in Chinese)[王秉中, 臧锐, 周洪澄2013微波学报29 25]

    [5]

    Feng J, Liao C, Zhang Q H, Sheng N, Zhou H J 2014 Acta Phys. Sin. 63 134101 (in Chinese)[冯菊, 廖成, 张青洪, 盛楠, 周海京2014物理学报63 134101]

    [6]

    Chen Q J, Jiang Q X, Zeng F L, Song C B 2015 Acta Phys. Sin. 64 204101 (in Chinese)[陈秋菊, 姜秋喜, 曾芳玲, 宋长宝2015物理学报64 204101]

    [7]

    Yang Y, Wang B Z, Ding S 2016 Chin. Phys. B 25 050101

    [8]

    Liu D H, Kang G, Li L, Chen Y, Vasudevan S, Joines W, Liu Q H, Krolik J, Carin L 2005 IEEE Trans. Antennas Propag. 53 3058

    [9]

    Liu X F, Wang B Z, Li J L W 2012 IEEE Trans. Antennas Propag. 60 220

    [10]

    Zhong X M, Liao C, Lin W B 2015 IEEE Trans. Antennas Propag. 63 5619

    [11]

    Jackson D R, Dowling D R 1991 J. Acoust. Soc. Am. 89 171

    [12]

    Schwarz U J 1978 Astron. Astrophys. 65 345

    [13]

    Bose R 2011 IEEE Trans. Aerosp. Electron. Syst. 47 2190

    [14]

    Rosny J, Lerosey G, Fink M 2010 IEEE Trans. Antennas Propag. 58 3139

    [15]

    Ding S, Wang B Z, Ge G D, Wang D, Zhao D S 2011 Acta Phys. Sin. 60 104101 (in Chinese)[丁帅, 王秉中, 葛广顶, 王多, 赵德双2011物理学报60 104101]

    [16]

    Carminati R, Saenz J J, Greffet J J, Nieto-Vesperinas M 2000 Phys. Rev. A 62 012712

    [17]

    Carminati R, Pierrat R, Rosny J, Fink M 2007 Opt. Lett. 32 3107

  • [1]

    Fink M 1997 Phys. Today 50 34

    [2]

    Lerosey G, Rosny J, Tourin A, Derode A, Fink M 2006 Phys. Rev. Lett. 88 154101

    [3]

    Kong Q, Shi Q F, Yu G Z, Zhang M 2012 Chin. Phys. Lett. 29 024208

    [4]

    Wang B Z, Zang R, Zhou H C 2013 J. Microwaves 29 25 (in Chinese)[王秉中, 臧锐, 周洪澄2013微波学报29 25]

    [5]

    Feng J, Liao C, Zhang Q H, Sheng N, Zhou H J 2014 Acta Phys. Sin. 63 134101 (in Chinese)[冯菊, 廖成, 张青洪, 盛楠, 周海京2014物理学报63 134101]

    [6]

    Chen Q J, Jiang Q X, Zeng F L, Song C B 2015 Acta Phys. Sin. 64 204101 (in Chinese)[陈秋菊, 姜秋喜, 曾芳玲, 宋长宝2015物理学报64 204101]

    [7]

    Yang Y, Wang B Z, Ding S 2016 Chin. Phys. B 25 050101

    [8]

    Liu D H, Kang G, Li L, Chen Y, Vasudevan S, Joines W, Liu Q H, Krolik J, Carin L 2005 IEEE Trans. Antennas Propag. 53 3058

    [9]

    Liu X F, Wang B Z, Li J L W 2012 IEEE Trans. Antennas Propag. 60 220

    [10]

    Zhong X M, Liao C, Lin W B 2015 IEEE Trans. Antennas Propag. 63 5619

    [11]

    Jackson D R, Dowling D R 1991 J. Acoust. Soc. Am. 89 171

    [12]

    Schwarz U J 1978 Astron. Astrophys. 65 345

    [13]

    Bose R 2011 IEEE Trans. Aerosp. Electron. Syst. 47 2190

    [14]

    Rosny J, Lerosey G, Fink M 2010 IEEE Trans. Antennas Propag. 58 3139

    [15]

    Ding S, Wang B Z, Ge G D, Wang D, Zhao D S 2011 Acta Phys. Sin. 60 104101 (in Chinese)[丁帅, 王秉中, 葛广顶, 王多, 赵德双2011物理学报60 104101]

    [16]

    Carminati R, Saenz J J, Greffet J J, Nieto-Vesperinas M 2000 Phys. Rev. A 62 012712

    [17]

    Carminati R, Pierrat R, Rosny J, Fink M 2007 Opt. Lett. 32 3107

计量
  • 文章访问数:  6271
  • PDF下载量:  235
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-27
  • 修回日期:  2016-07-05
  • 刊出日期:  2016-10-05

/

返回文章
返回