-
A new type of laser fusion indirect drive octahedral spherical hohlraum has been built up by Chinese researchers in recent years. The hohlraum with 6 laser entrance holes (LEHs) has superiority over other hohlraum configurations in both robust inherent high symmetry and high coupling energy efficiency from laser to hotspot for inertial confinement fusion study. Recently, an experimental investigation on radiation emission from the spherical hohlraum with two LEHs has been performed on the SGⅢ laser facility. In this experiment, 32 laser beams (24 beams from the top, 8 beams from the bottom) are injected into the hohlraum within 3 ns, and the total laser energy is 86.4 kJ. The hohlraum radius is 1.8 mm, and the radius of laser entrance hole is 0.6 mm. The experiments are conducted under two conditions:one is that a 0.48-radius capsule is located at the center of the hohlraum, and the other is that nothing is located in the hohlraum. Some flat response X-ray detectors (FXRDs) are installed at different angles on the target wall to collect the radiation energy. We carry out three-dimensional (3D) simulations of the experiment by using our 3D radiation implicit Monte Carlo code IMC3D. This code was developed in recent years based on fleck and Cumming's ideas. The hydrodynamics is not taken into consideration in the simulations, so we deduct 30% laser energy lost to hohlraum wall movements and back scattered by laser plasma instabilities. Based on the approximation, the simulation results are reasonable in principle. As a result, the radiation temperature of the hohlraum with capsule is 230 eV, and the radiation temperature of the hohlraum without capsule is 238 eV. At the end of laser injection, the capsule reflection ratio is 0.83. Compared with the experimental data, most of the simulation data agree well with the detector observations, except the data at 0 angle. The possible reasons for the difference are analyzed. The flux at 0 angle is more sensitive to the wall plasma movements than at the other angles. So if we ignore this phenomenon, then the witch will occur both in experiment and in simulation, yielding obvious differences for those quantities which strongly relate to the hydrodynamics of wall plasma. Finally, the methods of eliminating the difference are proposed and the prospect of IMC3D is presented.
-
Keywords:
- spherical hohlraum /
- laser fusion /
- indirect driving /
- implicit Monte Carlo
[1] Zhang J, Chang T Q 2004 Fundaments of the Target Physics for Laser Fusion (Beijing: National Defense Industry Press) (in Chinese)[张均, 常铁强 2004 激光核聚变靶物理基础(北京: 国防工业出版社)]
[2] Atzeni S, Meyer-ter-Vehn J (Shen B F, Transl.) 2008 The Physics of Inertial Fusion (Beijing: Science Press) (in Chinese)[阿蔡塞, 迈耶特费 (沈百飞 译) 2008 惯性聚变物理 (北京: 科学出版社)]
[3] Lindl J D 1995 Phys. Plasmas 2 3933
[4] Moses E I, Boyd R N, Remington B A, Keane C J, Al-Ayat R 2009 Phys. Plasmas 16 041006
[5] Moses E I, Lindl J D, Spaeth M L, Patterson R W, Sawicki R H, Atherton L J, Baisden P A, Lagin L J, Larson D W, Magowan B J, Miller G H, Rardin D C, Roberts V S, van Wonterghem B M, Wegner P J 2016 Fusion Sci. Technol. 69 1
[6] Lindl J D 2014 Phys. Plasmas 21 020501
[7] Lan K, Liu J, Lai D X, Zheng W D, He X T 2014 Phys. Plasmas 21 010704
[8] Lan K, He X T, Liu J, Zheng W D, Lai D X 2014 Phys. Plasmas 21 052704
[9] Lan K, Zheng W D 2014 Phys. Plasmas 21 090704
[10] Huo W Y, Liu J, Zhao Y Q, Zheng W D, Lan K 2014 Phys. Plasmas 21 114503
[11] Li S, Lan K, Liu J 2015 Laser Part. Beams 15 263
[12] Lan K, Liu J, Li Z C, Xie X F, Huo W Y, Chen Y H, Ren G L, Zheng C Y, Yang D, Li S W, Yang Z W, Guo L, Li S, Zhang M Y, Han X Y, Zhai C L, Hou L F, Li Y K, Deng K L, Yuan Z, Zhan X Y, Wang F, Yuan G H, Zhang H J, Jiang B B, Huang L Z, Zhang W, Du K, Zhao R C, Li P, Wang W, Su J Q, Deng X W, Hu D X, Zhou W, Jia H T, Ding Y K, Zheng W G, He X T 2016 Matter Radiat. Extremes 1 8
[13] Fleck J A, Cummings J D 1971 J. Comput. Phys. 8 313
[14] Li S, Li G, Tian D F, Deng L 2013 Acta Phys. Sin. 62 249501 (in Chinese)[李树, 李刚, 田东风, 邓力 2013 物理学报 62 249501]
[15] Huo W Y, Li Z C, Yang D, Lan K, Liu J, Ren G L, Li S W, Yang Z W, Guo L, Hou L F, Xie X F, Li Y K, Deng K L, Yuan Z, Zhan X Y, Yuan G H, Zhang H J, Jiang B B, Huang L Z, Du K, Zhao R C, Li P, Wang W, Su J Q, Ding Y K, He X T, Zhang W Y 2016 Matter Radiat. Extremes 1 2
-
[1] Zhang J, Chang T Q 2004 Fundaments of the Target Physics for Laser Fusion (Beijing: National Defense Industry Press) (in Chinese)[张均, 常铁强 2004 激光核聚变靶物理基础(北京: 国防工业出版社)]
[2] Atzeni S, Meyer-ter-Vehn J (Shen B F, Transl.) 2008 The Physics of Inertial Fusion (Beijing: Science Press) (in Chinese)[阿蔡塞, 迈耶特费 (沈百飞 译) 2008 惯性聚变物理 (北京: 科学出版社)]
[3] Lindl J D 1995 Phys. Plasmas 2 3933
[4] Moses E I, Boyd R N, Remington B A, Keane C J, Al-Ayat R 2009 Phys. Plasmas 16 041006
[5] Moses E I, Lindl J D, Spaeth M L, Patterson R W, Sawicki R H, Atherton L J, Baisden P A, Lagin L J, Larson D W, Magowan B J, Miller G H, Rardin D C, Roberts V S, van Wonterghem B M, Wegner P J 2016 Fusion Sci. Technol. 69 1
[6] Lindl J D 2014 Phys. Plasmas 21 020501
[7] Lan K, Liu J, Lai D X, Zheng W D, He X T 2014 Phys. Plasmas 21 010704
[8] Lan K, He X T, Liu J, Zheng W D, Lai D X 2014 Phys. Plasmas 21 052704
[9] Lan K, Zheng W D 2014 Phys. Plasmas 21 090704
[10] Huo W Y, Liu J, Zhao Y Q, Zheng W D, Lan K 2014 Phys. Plasmas 21 114503
[11] Li S, Lan K, Liu J 2015 Laser Part. Beams 15 263
[12] Lan K, Liu J, Li Z C, Xie X F, Huo W Y, Chen Y H, Ren G L, Zheng C Y, Yang D, Li S W, Yang Z W, Guo L, Li S, Zhang M Y, Han X Y, Zhai C L, Hou L F, Li Y K, Deng K L, Yuan Z, Zhan X Y, Wang F, Yuan G H, Zhang H J, Jiang B B, Huang L Z, Zhang W, Du K, Zhao R C, Li P, Wang W, Su J Q, Deng X W, Hu D X, Zhou W, Jia H T, Ding Y K, Zheng W G, He X T 2016 Matter Radiat. Extremes 1 8
[13] Fleck J A, Cummings J D 1971 J. Comput. Phys. 8 313
[14] Li S, Li G, Tian D F, Deng L 2013 Acta Phys. Sin. 62 249501 (in Chinese)[李树, 李刚, 田东风, 邓力 2013 物理学报 62 249501]
[15] Huo W Y, Li Z C, Yang D, Lan K, Liu J, Ren G L, Li S W, Yang Z W, Guo L, Hou L F, Xie X F, Li Y K, Deng K L, Yuan Z, Zhan X Y, Yuan G H, Zhang H J, Jiang B B, Huang L Z, Du K, Zhao R C, Li P, Wang W, Su J Q, Ding Y K, He X T, Zhang W Y 2016 Matter Radiat. Extremes 1 2
计量
- 文章访问数: 6556
- PDF下载量: 181
- 被引次数: 0