搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

贝叶斯频率估计中频率的先验分布对有色噪声作用的影响

杨棣 王元美 李军刚

引用本文:
Citation:

贝叶斯频率估计中频率的先验分布对有色噪声作用的影响

杨棣, 王元美, 李军刚

Influence of parameter prior information on effect of colored noise in Bayesian frequency estimation

Yang Di, Wang Yuan-Mei, Li Jun-Gang
PDF
导出引用
  • 在贝叶斯参数估计理论框架下,研究了被测参数的先验分布对有色噪声的抑制作用.选择一个受1/fα型谱密度有色噪声影响的自旋1/2量子比特作为量子探测系统来估计一个磁场强度的大小,利用贝叶斯代价函数的动力学演化来评判估计的精度,重点研究先验概率分布对噪声非高斯性的限制作用.研究发现:当先验概率的不确定度比较大时,有色噪声的非高斯性对频率估计精度的影响比较小;当先验概率的不确定度比较小时,有色噪声的非高斯性对频率估计精度的影响比较大.
    Parameter estimation, which undertakes one of the vital missions in quantum metrology, has attracted a lot of attention in recent years. A large number of investigations on the frequency estimation have been carried out. Most of them are based on Cramér-Rao bound estimation approach in which almost perfect knowledge of the parameter to be estimated is given. In reality, however, one has inadequate prior knowledge about the parameter to be estimated. Then the Bayesian estimation approach in which we can perform the estimation even if we only have partial prior information about the parameter would be an ideal choice. Prior information about the parameter can play a significant role in Bayesian statistical inference. So it is interesting to know how the prior knowledge affects the estimation accuracy in the estimation process. In the solid-state realization of probe system, material-specific fluctuations typically lead to the major contribution to the intrinsic noise. Then it is interesting to study the effects of colored noise on the quantum parameter estimation. In this work, we study the inhibitory effects of prior probability distribution of the parameter to be estimated on the effects of colored noise under the framework of Bayesian parameter estimation theory. In particular, we estimate the intensity of a magnetic field by adopting a spin-1/2 system which is influenced by the colored noise with 1/fα spectrum. To evaluate the accuracy of estimation, we obtain the Bayes cost analytically which can be applied to the noisy channels. We mainly focus on the inhibitory effect of prior probability distribution of measured parameter on the non-Gaussianity of noise. We find that for the case of broad prior frequency distribution, the influence of non-Gaussianity on the estimation is very weak. While for the case of narrow prior frequency distribution, the influence of non-Gaussianity on the estimation is strong. That means that in the Bayesian approach, when we have enough prior information about the frequency, the non-Gaussianity can conduce to the improvement of the accuracy of the estimation of the frequency. When we lose the prior information, we also lose the improvement of the accuracy from the non-Gaussianity. The uncertainty of the prior information tends to eliminate the effects of the non-Gaussianity of the noise.
      通信作者: 李军刚, jungl@bit.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11775019)和北京理工大学基础研究基金资助的课题.
      Corresponding author: Li Jun-Gang, jungl@bit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11775019) and the Fundamental Research Fund of Beijing Institute of Technology, China.
    [1]

    Wiseman H M, Milburn G J 2009 Quantum Measurement and Control (England: Cambridge University Press) pp51, 52

    [2]

    Paris M G A, Řeháček J 2010 Quantum Estimation Theory (Berlin: Springer-Verlag) pp1, 2

    [3]

    Helstrom C W 1976 Quantum Detection and Estimation Theory (New York: Academic Press) pp231, 252

    [4]

    Holevo A S 1982 Probabilistic and Statistical Aspects of Quantum Theory (Amsterdam: North-Holland) p64

    [5]

    Dowling J P 2008 Contemp. Phys. 49 125

    [6]

    Braunstein S L, Caves C M 1994 Phys. Rev. Lett. 72 3439

    [7]

    Pairs M G A 2009 Int. J. Quantum Inform. 7 125

    [8]

    Giovannetti V, Lloyd S, Maccone L 2011 Nat. Photon. 5 222

    [9]

    Demkowicz-Dobrzański R, Kołodyński J, Guţǎ M 2012 Nat. Commun. 3 1063

    [10]

    Escher B M, de Matos Filho R L, Davidovich L 2011 Nat. Phys. 7 406

    [11]

    Liu Y C, Xu Z F, Jin G R 2011 Phys. Rev. Lett. 107 013601

    [12]

    Liu G Q, Zhang Y R, Chang Y C, Yue J D, Fan H, Pan X Y 2015 Nat. Commun. 6 6726

    [13]

    Giovannetti V, Lloyd S, Maccone L 2006 Phys. Rev. Lett. 96 010401

    [14]

    Jarzyna M, Demkowicz-Dobrzański R 2015 New J. Phys. 17 013010

    [15]

    Demkowicz-Dobrzański R 2011 Phys. Rev. A 83 061802R

    [16]

    Cramér H 1946 Mathematical Methods of Statistics (Princeton, NJ: Princeton University Press) pp498-500

    [17]

    Lu X M, Sun Z, Wang X G, Luo S L, Oh C H 2013 Phys. Rev. A 87 050302

    [18]

    Li N, Luo S L 2013 Phys. Rev. A 88 014301

    [19]

    Lu X M, Wang X G, Sun C P 2010 Phys. Rev. A 82 042103

    [20]

    Zhang Y M, Li X W, Yang W, Jin G R 2013 Phys. Rev. A 88 043832

    [21]

    Chin A W, Huegla S F, Plenio M B 2012 Phys. Rev. Lett. 109 233601

    [22]

    Monras A, Paris M G A 2007 Phys. Rev. Lett. 98 160401

    [23]

    Li X L, Li J G, Wang Y M 2017 Phys. Lett. A 381 216

    [24]

    Ma J, Huang Y X, Wang X G, Sun C P 2011 Phys. Rev. A 84 022302

    [25]

    Zhong W, Sun Z, Ma J, Wang X G, Nori F 2013 Phys. Rev. A 87 022337

    [26]

    Weiss U 1993 Quantum Dissipative System (Singapore: World Scientific) p5

    [27]

    Yoshihara F, Harrabi K, Niskanen A O, Nakamura A, Tsai J S 2006 Phys. Rev. Lett. 97 167001

    [28]

    Kakuyanagi K, Meno T, Saito S, Nakano H, Semba K, Takayanagi H, Deppe F, Shnirman A 2007 Phys. Rev. Lett. 98 047004

    [29]

    Bergli J, Galperin Y M, Altshuler B L 2009 New J. Phys. 11 025002

    [30]

    Benedetti C, Buscemi F, Bordone P 2013 Phys. Rev. A 87 052328

    [31]

    Benedetti C, Paris M G A, Maniscalco S 2014 Phys. Rev. A 89 012114

    [32]

    Ban M 2016 Quantum Inf. Process. 15 2213

    [33]

    Li J G, Wang Y M, Yang D, Zou J 2017 Phys. Rev. A 96 052130

    [34]

    Wiebe N, Granade C E, Ferrie C, Cory D G 2014 Phys. Rev. Lett. 112 190501

    [35]

    Wang J W, Paesani S, Santagati R, Knauer S, Gentile A A, Wiebe N, Petruzzella M, O’Brien J L, Rarity J G, Laing A, Thompson M G 2017 Nat. Phys. 13 551

    [36]

    Stenberg M P V, Köhn O, Wilhelm F K 2016 Phys. Rev. A 93 012122

  • [1]

    Wiseman H M, Milburn G J 2009 Quantum Measurement and Control (England: Cambridge University Press) pp51, 52

    [2]

    Paris M G A, Řeháček J 2010 Quantum Estimation Theory (Berlin: Springer-Verlag) pp1, 2

    [3]

    Helstrom C W 1976 Quantum Detection and Estimation Theory (New York: Academic Press) pp231, 252

    [4]

    Holevo A S 1982 Probabilistic and Statistical Aspects of Quantum Theory (Amsterdam: North-Holland) p64

    [5]

    Dowling J P 2008 Contemp. Phys. 49 125

    [6]

    Braunstein S L, Caves C M 1994 Phys. Rev. Lett. 72 3439

    [7]

    Pairs M G A 2009 Int. J. Quantum Inform. 7 125

    [8]

    Giovannetti V, Lloyd S, Maccone L 2011 Nat. Photon. 5 222

    [9]

    Demkowicz-Dobrzański R, Kołodyński J, Guţǎ M 2012 Nat. Commun. 3 1063

    [10]

    Escher B M, de Matos Filho R L, Davidovich L 2011 Nat. Phys. 7 406

    [11]

    Liu Y C, Xu Z F, Jin G R 2011 Phys. Rev. Lett. 107 013601

    [12]

    Liu G Q, Zhang Y R, Chang Y C, Yue J D, Fan H, Pan X Y 2015 Nat. Commun. 6 6726

    [13]

    Giovannetti V, Lloyd S, Maccone L 2006 Phys. Rev. Lett. 96 010401

    [14]

    Jarzyna M, Demkowicz-Dobrzański R 2015 New J. Phys. 17 013010

    [15]

    Demkowicz-Dobrzański R 2011 Phys. Rev. A 83 061802R

    [16]

    Cramér H 1946 Mathematical Methods of Statistics (Princeton, NJ: Princeton University Press) pp498-500

    [17]

    Lu X M, Sun Z, Wang X G, Luo S L, Oh C H 2013 Phys. Rev. A 87 050302

    [18]

    Li N, Luo S L 2013 Phys. Rev. A 88 014301

    [19]

    Lu X M, Wang X G, Sun C P 2010 Phys. Rev. A 82 042103

    [20]

    Zhang Y M, Li X W, Yang W, Jin G R 2013 Phys. Rev. A 88 043832

    [21]

    Chin A W, Huegla S F, Plenio M B 2012 Phys. Rev. Lett. 109 233601

    [22]

    Monras A, Paris M G A 2007 Phys. Rev. Lett. 98 160401

    [23]

    Li X L, Li J G, Wang Y M 2017 Phys. Lett. A 381 216

    [24]

    Ma J, Huang Y X, Wang X G, Sun C P 2011 Phys. Rev. A 84 022302

    [25]

    Zhong W, Sun Z, Ma J, Wang X G, Nori F 2013 Phys. Rev. A 87 022337

    [26]

    Weiss U 1993 Quantum Dissipative System (Singapore: World Scientific) p5

    [27]

    Yoshihara F, Harrabi K, Niskanen A O, Nakamura A, Tsai J S 2006 Phys. Rev. Lett. 97 167001

    [28]

    Kakuyanagi K, Meno T, Saito S, Nakano H, Semba K, Takayanagi H, Deppe F, Shnirman A 2007 Phys. Rev. Lett. 98 047004

    [29]

    Bergli J, Galperin Y M, Altshuler B L 2009 New J. Phys. 11 025002

    [30]

    Benedetti C, Buscemi F, Bordone P 2013 Phys. Rev. A 87 052328

    [31]

    Benedetti C, Paris M G A, Maniscalco S 2014 Phys. Rev. A 89 012114

    [32]

    Ban M 2016 Quantum Inf. Process. 15 2213

    [33]

    Li J G, Wang Y M, Yang D, Zou J 2017 Phys. Rev. A 96 052130

    [34]

    Wiebe N, Granade C E, Ferrie C, Cory D G 2014 Phys. Rev. Lett. 112 190501

    [35]

    Wang J W, Paesani S, Santagati R, Knauer S, Gentile A A, Wiebe N, Petruzzella M, O’Brien J L, Rarity J G, Laing A, Thompson M G 2017 Nat. Phys. 13 551

    [36]

    Stenberg M P V, Köhn O, Wilhelm F K 2016 Phys. Rev. A 93 012122

  • [1] 郝望, 段睿, 杨坤德. 联合简正波水波和底波频散特性的贝叶斯地声参数反演. 物理学报, 2023, 72(5): 054303. doi: 10.7498/aps.72.20221717
    [2] 李竞, 丁海涛, 张丹伟. 非厄米哈密顿量中的量子Fisher信息与参数估计. 物理学报, 2023, 72(20): 200601. doi: 10.7498/aps.72.20230862
    [3] 李倩倩, 阳凡林, 张凯, 郑炳祥. 不确定海洋环境中基于贝叶斯理论的声源运动参数估计方法. 物理学报, 2016, 65(16): 164304. doi: 10.7498/aps.65.164304
    [4] 申雅君, 郭永峰, 袭蓓. 关联高斯与非高斯噪声激励的FHN神经元系统的稳态分析. 物理学报, 2016, 65(12): 120501. doi: 10.7498/aps.65.120501
    [5] 王柳, 何文平, 万仕全, 廖乐健, 何涛. 混沌系统中参数估计的演化建模方法. 物理学报, 2014, 63(1): 019203. doi: 10.7498/aps.63.019203
    [6] 林剑, 许力. 基于混合生物地理优化的混沌系统参数估计. 物理学报, 2013, 62(3): 030505. doi: 10.7498/aps.62.030505
    [7] 杨波, 梅冬成. 非高斯噪声对惯性棘轮中粒子负迁移率的影响. 物理学报, 2013, 62(11): 110502. doi: 10.7498/aps.62.110502
    [8] 靳晓琴, 许勇, 张慧清. 非高斯噪声驱动下一维双稳系统的逻辑操作. 物理学报, 2013, 62(19): 190510. doi: 10.7498/aps.62.190510
    [9] 颜鹏程, 侯威, 钱忠华, 何文平, 孙建安. 基于贝叶斯理论的全球海温异常对500 hPa 温度场的影响分析. 物理学报, 2012, 61(13): 139202. doi: 10.7498/aps.61.139202
    [10] 龙文, 焦建军. 基于混合交叉进化算法的混沌系统参数估计. 物理学报, 2012, 61(11): 110507. doi: 10.7498/aps.61.110507
    [11] 何亮, 杜磊, 黄晓君, 陈华, 陈文豪, 孙鹏, 韩亮. 金属互连电迁移噪声的非高斯性模型研究. 物理学报, 2012, 61(20): 206601. doi: 10.7498/aps.61.206601
    [12] 李扬, 郭树旭. 基于稀疏分解的大功率半导体激光器1/f噪声参数估计的新方法. 物理学报, 2012, 61(3): 034208. doi: 10.7498/aps.61.034208
    [13] 郝崇清, 王江, 邓斌, 魏熙乐. 基于稀疏贝叶斯学习的复杂网络拓扑估计. 物理学报, 2012, 61(14): 148901. doi: 10.7498/aps.61.148901
    [14] 张静静, 靳艳飞. 非高斯噪声激励下FitzHugh-Nagumo神经元系统的随机共振. 物理学报, 2012, 61(13): 130502. doi: 10.7498/aps.61.130502
    [15] 曹小群, 宋君强, 张卫民, 赵军, 张理论. 基于变分方法的混沌系统参数估计. 物理学报, 2011, 60(7): 070511. doi: 10.7498/aps.60.070511
    [16] 张静静, 靳艳飞. 非高斯噪声驱动下非对称双稳系统的平均首次穿越时间与随机共振研究. 物理学报, 2011, 60(12): 120501. doi: 10.7498/aps.60.120501
    [17] 徐超, 康艳梅. 非高斯噪声激励下含周期信号FitzHugh-Nagumo系统的响应特征. 物理学报, 2011, 60(10): 108701. doi: 10.7498/aps.60.108701
    [18] 郭培荣, 徐伟, 刘迪. 非高斯噪声驱动的双奇异随机系统的熵流与熵产生. 物理学报, 2009, 58(8): 5179-5185. doi: 10.7498/aps.58.5179
    [19] 赵燕, 徐伟, 邹少存. 非高斯噪声激励下FHN神经元系统的定态概率密度与平均首次穿越时间. 物理学报, 2009, 58(3): 1396-1402. doi: 10.7498/aps.58.1396
    [20] 陈 争, 曾以成, 付志坚. 混沌背景中信号参数估计的新方法. 物理学报, 2008, 57(1): 46-50. doi: 10.7498/aps.57.46
计量
  • 文章访问数:  6905
  • PDF下载量:  161
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-28
  • 修回日期:  2017-12-28
  • 刊出日期:  2019-03-20

/

返回文章
返回