搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冷原子物理中的一维少体问题

刘彦霞 张云波

引用本文:
Citation:

冷原子物理中的一维少体问题

刘彦霞, 张云波

Review of one-dimensional few-body systems in ultracold atomic physics

Liu Yan-Xia, Zhang Yun-Bo
PDF
HTML
导出引用
  • 作为构成量子多体系统的基本单元, 一维少体系统的研究不仅可以在理论上为多体系统的量子关联及动力学等性质提供更为基本的理解, 也可以为实验上制备多体系统提供更加方便和功能更加全面的方法. 本文回顾了冷原子物理中一维少体系统最新的实验和理论进展. 首先介绍了少体实验中实现的谐振子势阱中确定原子数的精确制备, 亚稳态势阱和双阱系统中原子的隧穿, 以及强相互作用下等效自旋链的实验结果. 然后深度解析了理论研究方面, 特别是基于精确可解模型的一些重要结果, 包括亚稳态势阱中相互作用原子的隧穿概率, 以及相应实验上常见势阱的能谱分析、密度分布、隧穿动力学以及强相互作用极限下的有效自旋链模型等.
    We review some recent theoretical and experimental developments of one-dimensional few-body problems in ultracold atomic system. The experiments have so far realized the deterministic loading of few atoms in the ground state of a potential well, the observation of tunneling dynamics out of the metastable trap controlled by a magnetic gradient for a repulsively or attractively interacting system, the preparation of two fermionic atoms in an isolated double-well potential with a full control over the quantum state of the system, the formation of a Fermi sea by studying quasi-one-dimensional systems of ultracold atoms consisting of a single impurity interacting with an increasing number of identical fermions, and the deterministic preparation of antiferromagnetic Heisenberg spin chains consisting of up to four fermionic atoms in a one-dimensional trap. These achievements make the ultracold atoms an ideal platform to study many-body physics in a bottom-up approach, i.e., one starts from the fundamental building block of the system and observes the emergence of many-body effects by adding atoms one by one into the system. Corresponding theoretical models have been developed to explain the experimental data, to tackle the crossover boundary between few and many particles, and even explore the solvability and integrability of the models, especially the energy spectrum of interacting few atoms such as two atoms in a harmonic trap, two heteronuclear atoms of unequal mass in a ring trap, and two atoms in a $\delta$-barrier split double well potential. After a brief review of Bethe-Ansatz method, a theory for the tunneling of one atom out of a trap containing two interacting cold atoms is developed based on the calculation of the quasiparticle wave function, and the tunneling dynamics of two atoms starting from the NOON state is explored from the exactly solved model of $\delta$-barrier split double well based on a Bethe ansatz type hypothesis of the wave functions. It was shown that the spectroscopy and spin dynamics for strongly interacting few atoms of spin-1/2 and spin-1 can be described by effective spin chain Hamiltonians, which serves as a useful and efficient tool to study the quantum magnetism with clod atoms.
      通信作者: 张云波, ybzhang@sxu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11674201, 11474189)资助的课题.
      Corresponding author: Zhang Yun-Bo, ybzhang@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674201, 11474189).
    [1]

    Pitaevskii L, Stringari S 2016 Bose-Einstein Condensation and Superfluidity(2nd Ed.) (New York: Oxford University Press) p.42

    [2]

    Pethick C J, Smith H 2008 Bose-Einstein Condensation in Dilute Gases (2nd Ed.) (Cambridge: Cambridge University Press) p.159

    [3]

    Gross E P 1961 Nuovo Cimento 20 454Google Scholar

    [4]

    Gross E P 1963 J. Math. Phys. 4 195Google Scholar

    [5]

    Pitaevskii L P 1961 J. Exp. Theor. Phys. 40 646

    [6]

    Dalfovo F, Giorgini S, Pitaevskii L P, Stringari S 1999 Rev. Mod. Phys. 71 463Google Scholar

    [7]

    Baranov M A 2008 Phys. Rep. 464 71Google Scholar

    [8]

    Lahaye T, Menotti C, Santos L, Lewenstein M, Pfau T 2009 Rep. Prog. Phys. 72 126401Google Scholar

    [9]

    Serwane F, Zürn G, Lompe T, Ottenstein T B, Wenz A N, Jochim S 2011 Science 332 236

    [10]

    Greiner M, Mandel O, Esslinger T, Hänsch T W, Bloch I 2002 Nature 415 39Google Scholar

    [11]

    Kohl M, Moritz H, Stöferle T, Günter K, Esslinger T 2005 Phys. Rev. Lett. 94 080403Google Scholar

    [12]

    Chin C, Grimm R, Julienne P, Tiesinga E 2010 Rev. Mod. Phys. 82 1225Google Scholar

    [13]

    Inouye S, Andrews M R, Stenger J, Miesner H J, Stamper-Kurn D M, Ketterle W 1998 Nature 392 151Google Scholar

    [14]

    Courteille P, Freeland R S, Heinzen D J, van Abeelen F A, Verhaar B J 1998 Phys. Rev. Lett. 81 69Google Scholar

    [15]

    Roberts J L, Claussen N R, Burke J P, Greene C H, Cornell E A, Wieman C E 1998 Phys. Rev. Lett. 81 5109Google Scholar

    [16]

    Efimov V 1970 Phys. Lett. B 33 563Google Scholar

    [17]

    Efimov V 1970 Sov. J. Nucl. Phys. 12 598

    [18]

    Efimov V 1973 Nucl. Phys. A 210 157Google Scholar

    [19]

    Blume D, Daily K M 2010 Phys. Rev. Lett. 105 170403Google Scholar

    [20]

    Naidon P, Endo S 2017 Rep. Prog. Phys. 80 056001Google Scholar

    [21]

    Kraemer T, Mark M, Waldburger P, Danzl J G, Chin C, Engeser B, Lange A D, Pilch K, Jaakkola A, Nägerl H C, Grimm R 2006 Nature 440 315Google Scholar

    [22]

    刘彦霞 2017 博士学位论文(太原: 山西大学)

    Liu Y X 2017 Ph. D. Dissertation (Taiyuan: Shanxi University) (in Chinese)

    [23]

    Blume D 2012 Rep. Prog. Phys. 75 046401Google Scholar

    [24]

    Zürn G, Serwane F, Serwane F, Lompe T, Wenz A N, Ries M G, Bohn J E, Jochim S 2012 Phys. Rev. Lett. 108 075303Google Scholar

    [25]

    Zürn G, Wenz A N, MurmannS, Bergschneider A, Lompe T, Jochim S 2013 Phys. Rev. Lett. 111 175302Google Scholar

    [26]

    Wenz A N, Zürn G, Murmann S, Brouzos I, Lompe T, Jochim S 2013 Science 342 457Google Scholar

    [27]

    Murmann S, Bergschneider A, Klinkhamer V M, Zürn G, Lompe T, Jochim S 2015 Phys. Rev. Lett. 114 080402Google Scholar

    [28]

    Murmann S, Deuretzbacher F, Zürn G, Bjerlin J, Reimann S M, Santos L, Lompe T, Jochim S 2015 Phys. Rev. Lett. 115 215301Google Scholar

    [29]

    Kaufman A M, Lester B J, Regal C A 2012 Phys. Rev. X 2 041014

    [30]

    Kaufman A M, Lester B J, Reynolds C M, Wall M L, Foss-Feig M, Hazzard K R A, Rey A M, Regal C A 2014 Science 345 306Google Scholar

    [31]

    Busch T, Englert B G, Rzazewski K, Wilkens M 1998 Found. Phys. 28 549Google Scholar

    [32]

    Olshanii M 1998 Phys. Rev. Lett. 81 938Google Scholar

    [33]

    Rontani M 2012 Phys. Rev. Lett. 108 115302Google Scholar

    [34]

    Rontani M 2013 Phys. Rev. A 88 043633Google Scholar

    [35]

    Bethe H A 1931 Z. Phys. 71 205Google Scholar

    [36]

    Lieb E H, Liniger W 1963 Phys. Rev. 1963 130

    [37]

    McGuire J B 1965 J. Math. Phys. 6 432Google Scholar

    [38]

    Gaudin M 1967 Phys. Lett. A 24 55Google Scholar

    [39]

    Yang C N 1967 Phys. Rev. Lett. 19 1312Google Scholar

    [40]

    Baxter R J 1972 Ann. Phys. 70 193Google Scholar

    [41]

    Lieb E H, Wu F Y 1968 Phys. Rev. Lett. 20 1445Google Scholar

    [42]

    Korepin V E, Essler F H L 1994 Exactly Solvable Models of Strongly Correlated Electrons (Singapore: World Scientific)

    [43]

    Mattis D C 1993 The Many-Body Problem: An Encyclopedia of Exactly Solved Models in One Dimension (Singapore: World Scientific)

    [44]

    Takahashi M 1999 Thermodynamics of One-Dimensional Solvable models (Cambridge: Cambridge University Press)

    [45]

    Baxter R J 1989 Exactly solved models in statistical mechanics (London: Academic Press)

    [46]

    Sutherland B 2004 Beautiful Models-70 years of exactly solved quantum many-body problems (Singapore: World Scientific)

    [47]

    Hao Y, Zhang Y, Liang J, Chen S 2006 Phys. Rev. A 73 053605Google Scholar

    [48]

    Hao Y, Zhang Y, Chen S 2009 Phys. Rev. A 79 043633Google Scholar

    [49]

    Hao Y, Zhang Y, Liang J, Chen S 2006 Phys. Rev. A 73 063617Google Scholar

    [50]

    Hao Y, Zhang Y, Guan X, Chen S 2009 Phys. Rev. A 79 033607Google Scholar

    [51]

    Hao Y, Chen S 2009 Phys. Rev. A 80 043608Google Scholar

    [52]

    Hao Y, Guo H, Zhang Y, Chen S 2011 Phys. Rev. A 83 053632Google Scholar

    [53]

    Hao Y, Zhang Y, Chen S 2008 Phys. Rev. A 78 023631Google Scholar

    [54]

    Guan X 2014 Int. J. Mod. Phys. B 28 1430015Google Scholar

    [55]

    Guan X, Batchelor M, Lee C 2013 Rev. Mod. Phys. 85 1633Google Scholar

    [56]

    Jiang Y, Chen Y, Guan X 2015 Chinese Phys. B 24 050311Google Scholar

    [57]

    Yin X, Chen S, Zhang Y 2009 Phys. Rev. A 79 053604Google Scholar

    [58]

    Yin X, Guan X, Batchelor M, Chen S 2011 Phys. Rev. A 83 013602Google Scholar

    [59]

    Yin X, Guan X, Chen S, Batchelor M 2011 Phys. Rev. A 84 011602(R)Google Scholar

    [60]

    Yin X, Guan X, Zhang Y, Chen S 2012 Phys. Rev. A 85 013608Google Scholar

    [61]

    Yin X, Guan X, Zhang Y, Su H, Zhang S 2018 Phys. Rev. A 98 023605Google Scholar

    [62]

    Wang H, Hao Y, Zhang Y 2012 Phys. Rev. A 85 053630Google Scholar

    [63]

    Wang H, Zhang Y 2013 Phys. Rev. A 88 023626Google Scholar

    [64]

    Paredes B, Widera A, Murg V, Mandel O, Fölling S, Cirac I, Shlyapnikov G, Hänsch T, Bloch I 2004 Nature 429 277Google Scholar

    [65]

    Kinoshita, T, Wenger T, Weiss D 2004 Science 305 1125Google Scholar

    [66]

    Haller E, Gustavsson M, Mark M, Danzl J, Hart R, Pupillo G, Nägerl H 2009 Science 325 1224Google Scholar

    [67]

    Liao Y, Rittner A, Paprotta T, Li W, Partridge G, Hulet R, Baur S, Mueller E 2010 Nature 467 567Google Scholar

    [68]

    Guan L, Chen S, Wang Y, Ma Z 2009 Phys. Rev. Lett. 102 160402Google Scholar

    [69]

    Chen S, Guan X, Yin X, Guan L, Batchelor M 2010 Phys. Rev. A 81 031608(R)Google Scholar

    [70]

    Chen S, Guan L, Yin X, Hao Y, Guan X 2010 Phys. Rev. A 81 031609(R)Google Scholar

    [71]

    Guan L, Chen S 2010 Phys. Rev. Lett. 105 175301Google Scholar

    [72]

    Yang B, Chen Y, Zheng Y, Sun H, Dai H, Guan X, Yuan Z, Pan J 2017 Phys. Rev. Lett. 119 165701Google Scholar

    [73]

    Chen Y, Jiang Y, Guan X, Zhou Q 2014 Nat. Commun. 5 5140Google Scholar

    [74]

    Goold J, Busch T 2008 Phys. Rev. A 77 063601Google Scholar

    [75]

    Rubeni D, Foerster A, Roditi I 2012 Phys. Rev. A 86 043619Google Scholar

    [76]

    Liu Y, Ye J, Li Y, Zhang Y 2015 Chin. Phys. B 24 086701Google Scholar

    [77]

    Stan C A, Zwierlein M W, Schunck C H, Raupach S M F, Ketterle W 2004 Phys. Rev. Lett. 93 143001Google Scholar

    [78]

    Ospelkaus C, Ospelkaus S, Humbert L, Ernst P, Sengstock K, Bongs K 2006 Phys. Rev. Lett. 97 120402Google Scholar

    [79]

    Wille E, Spiegelhalder F M, Kerner G, Naik D, Trenkwalder A, Hendl G, Schreck F, Grimm R, Tiecke T G, Walraven J T M, Kokkelmans S J J M F, Tiesinga E, Julienne P S 2008 Phys. Rev. Lett. 100 053201Google Scholar

    [80]

    Iskin M, Sa de Melo C A R 2006 Phys. Rev. Lett. 97 100404Google Scholar

    [81]

    Deuretzbacher F, Plassmeier K, Pfannkuche D, Werner F, Ospelkaus C, Ospelkaus S, Sengstock K, Bongs K 2008 Phys. Rev. A 77 032726Google Scholar

    [82]

    Massignan P, Zaccanti M, Bruun G M 2014 Rep. Prog. Phys. 77 034401Google Scholar

    [83]

    Chen X, Guan L M, Chen S 2011 Eur. Phys. J. D 64 459Google Scholar

    [84]

    Will S, Best T, Schneider U, Hackermüller L, Lühmann D S, Bloch I 2010 Nature 465 201

    [85]

    Bardeen J 1961 Phys. Rev. Lett. 6 57Google Scholar

    [86]

    Simmonds R W, Lang K M, Hite D A, Nam S, Pappas D P, Martinis J M 2004 Phys. Rev. Lett. 93 077003Google Scholar

    [87]

    Albiez M, Gati R, Fölling J, Hunsmann S, Cristiani M, Oberthaler M K 2005 Phys. Rev. Lett. 95 010402Google Scholar

    [88]

    Shin Y, Saba M, Pasquini T A, Ketterle W, Pritchard D E, Leanhard A E 2004 Phys. Rev. Lett. 92 050405Google Scholar

    [89]

    Saba M, Pasquini T A, Sanner C, Shin Y, Ketterle W, Pritchard D E 2005 Science 307 1948Google Scholar

    [90]

    Milburn G J, Corney J, Wright E M, Walls D F 1997 Phys. Rev. A 55 4318Google Scholar

    [91]

    Smerzi A, Fantoni S, Giovanazzi S, Shenoy S R 1997 Phys. Rev. Lett. 79 4950Google Scholar

    [92]

    Zöllner S, Meyer H D, Schmelcher P 2008 Phys. Rev. Lett. 100 040401Google Scholar

    [93]

    Zöllner S, Meyer H D, Schmelcher P 2007 Phys. Rev. A 75 043608Google Scholar

    [94]

    Zöllner S, Meyer H D, Schmelcher P 2008 Phys. Rev. A 78 013621Google Scholar

    [95]

    Murphy D S, McCann J F, Goold J, Busch T 2007 Phys. Rev. A 76 053616Google Scholar

    [96]

    Yin X, Hao Y, Chen S, Zhang Y 2008 Phys. Rev. A 78 013604Google Scholar

    [97]

    Lü X, Yin X, Zhang Y 2010 Phys. Rev. A 81 043607Google Scholar

    [98]

    Liu Y, Zhang Y 2015 Phys. Rev. A 91 053610Google Scholar

    [99]

    Deuretzbacher F, Fredenhagen K, Becker D, Bongs K, Sengstock K, Pfannkuche K 2008 Phys. Rev. Lett. 100 160405Google Scholar

    [100]

    Deuretzbacher F, Becker D, Bjerlin J, Reimann S, Santos L 2014 Phys. Rev. A 90 013611Google Scholar

    [101]

    Yang L, Cui X 2016 Phys. Rev. A 93 013617Google Scholar

    [102]

    Yang L, Guan L, Pu H 2015 Phys. Rev. A 91 043634Google Scholar

    [103]

    Yang L, Pu H 2016 Phys. Rev. A 94 033614Google Scholar

    [104]

    Lindgren E, Rotureau J, Forssen C, Volosniev A, Zinner N 2014 New J. Phys. 16 063003Google Scholar

    [105]

    Volosniev A, Petrosyan D, Valiente M, Fedorov D, Jensen A, Zinner N. 2015 Phys. Rev. A 91 023620Google Scholar

    [106]

    Deuretzbacher F, Becker D, Santos L 2016 Phys. Rev. A 94 023606Google Scholar

    [107]

    Dehkharghani A, Volosniev A, Lindgren E, Rotureau J, Forssn C, Fedorov D, Jensen A, Zinner N 2015 Sci. Rep. 5 16075Google Scholar

    [108]

    Barfknecht R, Foerster A, Zinner N 2017 Phys. Rev. A 95 023612Google Scholar

    [109]

    Volosniev A, Fedorov D, Jensen A, Valiente M, Zinner N 2014 Nat. Commun. 5 5300Google Scholar

    [110]

    Volosniev A, Petrosyan D, Valiente M, Fedorov D, Jensen A, Zinner N 2015 Phys. Rev. A 91 023620

    [111]

    Levinsen J, Massignan P, Bruun G, Parish, M 2015 Sci. Adv. 1 e1500197Google Scholar

    [112]

    Hu H, Pan L, Chen S 2016 Phys. Rev. A 93 033636Google Scholar

    [113]

    Yang L, Guan X, Cui X 2016 Phys. Rev. A 93 051605Google Scholar

    [114]

    Massignan P, Levinsen J, Parish M 2015 Phys. Rev. Lett. 115 247202Google Scholar

    [115]

    Hu H, Guan L, Chen S 2016 New J. Phys. 18 025009Google Scholar

    [116]

    Deuretzbacher F, Becker D, Bjerlin J, Reimann S, Santos L 2017 Phys. Rev. A 95 043630Google Scholar

    [117]

    Volosniev A 2017 Few-body Syst. 58 54Google Scholar

    [118]

    Pan L, Liu Y, Hu H, Zhang Y, Chen S 2017 Phys. Rev. B 96 075149Google Scholar

    [119]

    Liu Y, Chen S, Zhang Y 2017 Phys. Rev. A 95 043628Google Scholar

  • 图 1  双原子的两种隧穿过程: 单原子次序隧穿及两原子配对隧穿. 本图摘自参考文献[25]

    Fig. 1.  The loss processes include two tunneling processes of two atoms out of a metastable potential: subsequent single-particle tunneling and direct pair tunneling (Reproduced with permission from Ref. [25]).

    图 2  三种相互作用的两原子系统的能量E与相互作用强度g的关系: (a)谐振子势阱中的两原子, 黑实线和红虚线分别表示相对运动奇宇称和偶宇称波函数所对应的能量; (b)周期边界条件下两异核原子, 黑实线和红虚线分别表示质量相等两原子和质量比为2.175情况下对应的能量; (c)双势阱中相互作用两原子的奇宇称态, 一维无限深方势阱中心为一个强度为d = 0.5的$ \delta $势垒劈开, 黑实线和红虚线分别表示准动量为实数的原子本征态和准动量为复数的分子态对应的能量. 这里能量的单位分别是$ \hbar \omega, 8\hbar^2 /m_1 L^2, 2\hbar^2 /m L^2 $, 相互作用强度g的单位分别是$ \sqrt{\hbar^3\omega/\mu}, 8\hbar^2 /m_1 L, 2\hbar^2 /m L $

    Fig. 2.  Energy spectrum of three types of interacting two-atom system: (a)Two atoms in a harmonic oscillator potential. Black solid lines and red dashed lines are odd parity and even parity energy level respectively; (b)two heteronuclear atoms in a ring trap. Black solid lines and red dashed lines are energy levels for equal mass and mass ratio $\alpha $ = 2.175 respectively; (c) two atoms in a $\delta $-split hard-wall double well. Five lowest odd parity levels for barrier height d = 0.5. Black solid lines and red dashed lines are the bound states for atoms with real-valued quasimomentum and the molecule states with complex-valued quasimomentum respectively.

    图 3  (a)衰减时间随磁场的变化. 黑色虚线和实线分别是WKB和考虑准粒子波动方程的修正的结果. 绿色线表示通过微扰论考虑非谐项贡献的结果; (b)相互作用强度和隧穿能量随磁场的变化.本图摘自参考文献[33]

    Fig. 3.  (a) Decay time $ \tau $ vs magnetic field B. The points with error bars are the experimental data[24], the dashed and solid lines are, respectively, the WKB $ (\tau_0) $ and QPWF predictions. The green light gray lines include the perturbation theory correction to the tunneling energy $ \varepsilon $; (b) interaction strength (red gray curve) and tunneling energy (black and green light gray curve) vs B (Reproduced with permission from Ref. [33]).

    图 4  (a)两个原子在同一个阱中的占据概率随时间的演化图. 黑实线, 蓝虚线, 红点线分别表示不同的相互作用强度g = 0.5, 1.5, 20. 在t = 0时刻势垒高度突然从d = 300降到d =0.5. (b)g = 1.5和20时一个周期里不同时刻的密度分布图, 这里坐标 $ x_1 $$ x_2 $ 的单位是 $ L/2 $. 本图摘自参考文献[98]

    Fig. 4.  (a) Tunneling dynamics of the occupation probability $ P_2(t) $ of finding both atoms in the same well for g = 0.5 (black solid line), g = 1.5 (blue dashed line), and g = 20 (red dotted line). The $ \delta $ barrier is abruptly lowered from a height d = 300 to 0.5 at time t = 0. (b) the two-body density functions $ \rho (x_1, x_2, t) $ at different times t, for g = 1.5 and 20, respectively. Here the coordinates $ x_1 $ and $ x_2 $ are in units of $ L/2 $ (Reproduced with permission from Ref. [98]).

  • [1]

    Pitaevskii L, Stringari S 2016 Bose-Einstein Condensation and Superfluidity(2nd Ed.) (New York: Oxford University Press) p.42

    [2]

    Pethick C J, Smith H 2008 Bose-Einstein Condensation in Dilute Gases (2nd Ed.) (Cambridge: Cambridge University Press) p.159

    [3]

    Gross E P 1961 Nuovo Cimento 20 454Google Scholar

    [4]

    Gross E P 1963 J. Math. Phys. 4 195Google Scholar

    [5]

    Pitaevskii L P 1961 J. Exp. Theor. Phys. 40 646

    [6]

    Dalfovo F, Giorgini S, Pitaevskii L P, Stringari S 1999 Rev. Mod. Phys. 71 463Google Scholar

    [7]

    Baranov M A 2008 Phys. Rep. 464 71Google Scholar

    [8]

    Lahaye T, Menotti C, Santos L, Lewenstein M, Pfau T 2009 Rep. Prog. Phys. 72 126401Google Scholar

    [9]

    Serwane F, Zürn G, Lompe T, Ottenstein T B, Wenz A N, Jochim S 2011 Science 332 236

    [10]

    Greiner M, Mandel O, Esslinger T, Hänsch T W, Bloch I 2002 Nature 415 39Google Scholar

    [11]

    Kohl M, Moritz H, Stöferle T, Günter K, Esslinger T 2005 Phys. Rev. Lett. 94 080403Google Scholar

    [12]

    Chin C, Grimm R, Julienne P, Tiesinga E 2010 Rev. Mod. Phys. 82 1225Google Scholar

    [13]

    Inouye S, Andrews M R, Stenger J, Miesner H J, Stamper-Kurn D M, Ketterle W 1998 Nature 392 151Google Scholar

    [14]

    Courteille P, Freeland R S, Heinzen D J, van Abeelen F A, Verhaar B J 1998 Phys. Rev. Lett. 81 69Google Scholar

    [15]

    Roberts J L, Claussen N R, Burke J P, Greene C H, Cornell E A, Wieman C E 1998 Phys. Rev. Lett. 81 5109Google Scholar

    [16]

    Efimov V 1970 Phys. Lett. B 33 563Google Scholar

    [17]

    Efimov V 1970 Sov. J. Nucl. Phys. 12 598

    [18]

    Efimov V 1973 Nucl. Phys. A 210 157Google Scholar

    [19]

    Blume D, Daily K M 2010 Phys. Rev. Lett. 105 170403Google Scholar

    [20]

    Naidon P, Endo S 2017 Rep. Prog. Phys. 80 056001Google Scholar

    [21]

    Kraemer T, Mark M, Waldburger P, Danzl J G, Chin C, Engeser B, Lange A D, Pilch K, Jaakkola A, Nägerl H C, Grimm R 2006 Nature 440 315Google Scholar

    [22]

    刘彦霞 2017 博士学位论文(太原: 山西大学)

    Liu Y X 2017 Ph. D. Dissertation (Taiyuan: Shanxi University) (in Chinese)

    [23]

    Blume D 2012 Rep. Prog. Phys. 75 046401Google Scholar

    [24]

    Zürn G, Serwane F, Serwane F, Lompe T, Wenz A N, Ries M G, Bohn J E, Jochim S 2012 Phys. Rev. Lett. 108 075303Google Scholar

    [25]

    Zürn G, Wenz A N, MurmannS, Bergschneider A, Lompe T, Jochim S 2013 Phys. Rev. Lett. 111 175302Google Scholar

    [26]

    Wenz A N, Zürn G, Murmann S, Brouzos I, Lompe T, Jochim S 2013 Science 342 457Google Scholar

    [27]

    Murmann S, Bergschneider A, Klinkhamer V M, Zürn G, Lompe T, Jochim S 2015 Phys. Rev. Lett. 114 080402Google Scholar

    [28]

    Murmann S, Deuretzbacher F, Zürn G, Bjerlin J, Reimann S M, Santos L, Lompe T, Jochim S 2015 Phys. Rev. Lett. 115 215301Google Scholar

    [29]

    Kaufman A M, Lester B J, Regal C A 2012 Phys. Rev. X 2 041014

    [30]

    Kaufman A M, Lester B J, Reynolds C M, Wall M L, Foss-Feig M, Hazzard K R A, Rey A M, Regal C A 2014 Science 345 306Google Scholar

    [31]

    Busch T, Englert B G, Rzazewski K, Wilkens M 1998 Found. Phys. 28 549Google Scholar

    [32]

    Olshanii M 1998 Phys. Rev. Lett. 81 938Google Scholar

    [33]

    Rontani M 2012 Phys. Rev. Lett. 108 115302Google Scholar

    [34]

    Rontani M 2013 Phys. Rev. A 88 043633Google Scholar

    [35]

    Bethe H A 1931 Z. Phys. 71 205Google Scholar

    [36]

    Lieb E H, Liniger W 1963 Phys. Rev. 1963 130

    [37]

    McGuire J B 1965 J. Math. Phys. 6 432Google Scholar

    [38]

    Gaudin M 1967 Phys. Lett. A 24 55Google Scholar

    [39]

    Yang C N 1967 Phys. Rev. Lett. 19 1312Google Scholar

    [40]

    Baxter R J 1972 Ann. Phys. 70 193Google Scholar

    [41]

    Lieb E H, Wu F Y 1968 Phys. Rev. Lett. 20 1445Google Scholar

    [42]

    Korepin V E, Essler F H L 1994 Exactly Solvable Models of Strongly Correlated Electrons (Singapore: World Scientific)

    [43]

    Mattis D C 1993 The Many-Body Problem: An Encyclopedia of Exactly Solved Models in One Dimension (Singapore: World Scientific)

    [44]

    Takahashi M 1999 Thermodynamics of One-Dimensional Solvable models (Cambridge: Cambridge University Press)

    [45]

    Baxter R J 1989 Exactly solved models in statistical mechanics (London: Academic Press)

    [46]

    Sutherland B 2004 Beautiful Models-70 years of exactly solved quantum many-body problems (Singapore: World Scientific)

    [47]

    Hao Y, Zhang Y, Liang J, Chen S 2006 Phys. Rev. A 73 053605Google Scholar

    [48]

    Hao Y, Zhang Y, Chen S 2009 Phys. Rev. A 79 043633Google Scholar

    [49]

    Hao Y, Zhang Y, Liang J, Chen S 2006 Phys. Rev. A 73 063617Google Scholar

    [50]

    Hao Y, Zhang Y, Guan X, Chen S 2009 Phys. Rev. A 79 033607Google Scholar

    [51]

    Hao Y, Chen S 2009 Phys. Rev. A 80 043608Google Scholar

    [52]

    Hao Y, Guo H, Zhang Y, Chen S 2011 Phys. Rev. A 83 053632Google Scholar

    [53]

    Hao Y, Zhang Y, Chen S 2008 Phys. Rev. A 78 023631Google Scholar

    [54]

    Guan X 2014 Int. J. Mod. Phys. B 28 1430015Google Scholar

    [55]

    Guan X, Batchelor M, Lee C 2013 Rev. Mod. Phys. 85 1633Google Scholar

    [56]

    Jiang Y, Chen Y, Guan X 2015 Chinese Phys. B 24 050311Google Scholar

    [57]

    Yin X, Chen S, Zhang Y 2009 Phys. Rev. A 79 053604Google Scholar

    [58]

    Yin X, Guan X, Batchelor M, Chen S 2011 Phys. Rev. A 83 013602Google Scholar

    [59]

    Yin X, Guan X, Chen S, Batchelor M 2011 Phys. Rev. A 84 011602(R)Google Scholar

    [60]

    Yin X, Guan X, Zhang Y, Chen S 2012 Phys. Rev. A 85 013608Google Scholar

    [61]

    Yin X, Guan X, Zhang Y, Su H, Zhang S 2018 Phys. Rev. A 98 023605Google Scholar

    [62]

    Wang H, Hao Y, Zhang Y 2012 Phys. Rev. A 85 053630Google Scholar

    [63]

    Wang H, Zhang Y 2013 Phys. Rev. A 88 023626Google Scholar

    [64]

    Paredes B, Widera A, Murg V, Mandel O, Fölling S, Cirac I, Shlyapnikov G, Hänsch T, Bloch I 2004 Nature 429 277Google Scholar

    [65]

    Kinoshita, T, Wenger T, Weiss D 2004 Science 305 1125Google Scholar

    [66]

    Haller E, Gustavsson M, Mark M, Danzl J, Hart R, Pupillo G, Nägerl H 2009 Science 325 1224Google Scholar

    [67]

    Liao Y, Rittner A, Paprotta T, Li W, Partridge G, Hulet R, Baur S, Mueller E 2010 Nature 467 567Google Scholar

    [68]

    Guan L, Chen S, Wang Y, Ma Z 2009 Phys. Rev. Lett. 102 160402Google Scholar

    [69]

    Chen S, Guan X, Yin X, Guan L, Batchelor M 2010 Phys. Rev. A 81 031608(R)Google Scholar

    [70]

    Chen S, Guan L, Yin X, Hao Y, Guan X 2010 Phys. Rev. A 81 031609(R)Google Scholar

    [71]

    Guan L, Chen S 2010 Phys. Rev. Lett. 105 175301Google Scholar

    [72]

    Yang B, Chen Y, Zheng Y, Sun H, Dai H, Guan X, Yuan Z, Pan J 2017 Phys. Rev. Lett. 119 165701Google Scholar

    [73]

    Chen Y, Jiang Y, Guan X, Zhou Q 2014 Nat. Commun. 5 5140Google Scholar

    [74]

    Goold J, Busch T 2008 Phys. Rev. A 77 063601Google Scholar

    [75]

    Rubeni D, Foerster A, Roditi I 2012 Phys. Rev. A 86 043619Google Scholar

    [76]

    Liu Y, Ye J, Li Y, Zhang Y 2015 Chin. Phys. B 24 086701Google Scholar

    [77]

    Stan C A, Zwierlein M W, Schunck C H, Raupach S M F, Ketterle W 2004 Phys. Rev. Lett. 93 143001Google Scholar

    [78]

    Ospelkaus C, Ospelkaus S, Humbert L, Ernst P, Sengstock K, Bongs K 2006 Phys. Rev. Lett. 97 120402Google Scholar

    [79]

    Wille E, Spiegelhalder F M, Kerner G, Naik D, Trenkwalder A, Hendl G, Schreck F, Grimm R, Tiecke T G, Walraven J T M, Kokkelmans S J J M F, Tiesinga E, Julienne P S 2008 Phys. Rev. Lett. 100 053201Google Scholar

    [80]

    Iskin M, Sa de Melo C A R 2006 Phys. Rev. Lett. 97 100404Google Scholar

    [81]

    Deuretzbacher F, Plassmeier K, Pfannkuche D, Werner F, Ospelkaus C, Ospelkaus S, Sengstock K, Bongs K 2008 Phys. Rev. A 77 032726Google Scholar

    [82]

    Massignan P, Zaccanti M, Bruun G M 2014 Rep. Prog. Phys. 77 034401Google Scholar

    [83]

    Chen X, Guan L M, Chen S 2011 Eur. Phys. J. D 64 459Google Scholar

    [84]

    Will S, Best T, Schneider U, Hackermüller L, Lühmann D S, Bloch I 2010 Nature 465 201

    [85]

    Bardeen J 1961 Phys. Rev. Lett. 6 57Google Scholar

    [86]

    Simmonds R W, Lang K M, Hite D A, Nam S, Pappas D P, Martinis J M 2004 Phys. Rev. Lett. 93 077003Google Scholar

    [87]

    Albiez M, Gati R, Fölling J, Hunsmann S, Cristiani M, Oberthaler M K 2005 Phys. Rev. Lett. 95 010402Google Scholar

    [88]

    Shin Y, Saba M, Pasquini T A, Ketterle W, Pritchard D E, Leanhard A E 2004 Phys. Rev. Lett. 92 050405Google Scholar

    [89]

    Saba M, Pasquini T A, Sanner C, Shin Y, Ketterle W, Pritchard D E 2005 Science 307 1948Google Scholar

    [90]

    Milburn G J, Corney J, Wright E M, Walls D F 1997 Phys. Rev. A 55 4318Google Scholar

    [91]

    Smerzi A, Fantoni S, Giovanazzi S, Shenoy S R 1997 Phys. Rev. Lett. 79 4950Google Scholar

    [92]

    Zöllner S, Meyer H D, Schmelcher P 2008 Phys. Rev. Lett. 100 040401Google Scholar

    [93]

    Zöllner S, Meyer H D, Schmelcher P 2007 Phys. Rev. A 75 043608Google Scholar

    [94]

    Zöllner S, Meyer H D, Schmelcher P 2008 Phys. Rev. A 78 013621Google Scholar

    [95]

    Murphy D S, McCann J F, Goold J, Busch T 2007 Phys. Rev. A 76 053616Google Scholar

    [96]

    Yin X, Hao Y, Chen S, Zhang Y 2008 Phys. Rev. A 78 013604Google Scholar

    [97]

    Lü X, Yin X, Zhang Y 2010 Phys. Rev. A 81 043607Google Scholar

    [98]

    Liu Y, Zhang Y 2015 Phys. Rev. A 91 053610Google Scholar

    [99]

    Deuretzbacher F, Fredenhagen K, Becker D, Bongs K, Sengstock K, Pfannkuche K 2008 Phys. Rev. Lett. 100 160405Google Scholar

    [100]

    Deuretzbacher F, Becker D, Bjerlin J, Reimann S, Santos L 2014 Phys. Rev. A 90 013611Google Scholar

    [101]

    Yang L, Cui X 2016 Phys. Rev. A 93 013617Google Scholar

    [102]

    Yang L, Guan L, Pu H 2015 Phys. Rev. A 91 043634Google Scholar

    [103]

    Yang L, Pu H 2016 Phys. Rev. A 94 033614Google Scholar

    [104]

    Lindgren E, Rotureau J, Forssen C, Volosniev A, Zinner N 2014 New J. Phys. 16 063003Google Scholar

    [105]

    Volosniev A, Petrosyan D, Valiente M, Fedorov D, Jensen A, Zinner N. 2015 Phys. Rev. A 91 023620Google Scholar

    [106]

    Deuretzbacher F, Becker D, Santos L 2016 Phys. Rev. A 94 023606Google Scholar

    [107]

    Dehkharghani A, Volosniev A, Lindgren E, Rotureau J, Forssn C, Fedorov D, Jensen A, Zinner N 2015 Sci. Rep. 5 16075Google Scholar

    [108]

    Barfknecht R, Foerster A, Zinner N 2017 Phys. Rev. A 95 023612Google Scholar

    [109]

    Volosniev A, Fedorov D, Jensen A, Valiente M, Zinner N 2014 Nat. Commun. 5 5300Google Scholar

    [110]

    Volosniev A, Petrosyan D, Valiente M, Fedorov D, Jensen A, Zinner N 2015 Phys. Rev. A 91 023620

    [111]

    Levinsen J, Massignan P, Bruun G, Parish, M 2015 Sci. Adv. 1 e1500197Google Scholar

    [112]

    Hu H, Pan L, Chen S 2016 Phys. Rev. A 93 033636Google Scholar

    [113]

    Yang L, Guan X, Cui X 2016 Phys. Rev. A 93 051605Google Scholar

    [114]

    Massignan P, Levinsen J, Parish M 2015 Phys. Rev. Lett. 115 247202Google Scholar

    [115]

    Hu H, Guan L, Chen S 2016 New J. Phys. 18 025009Google Scholar

    [116]

    Deuretzbacher F, Becker D, Bjerlin J, Reimann S, Santos L 2017 Phys. Rev. A 95 043630Google Scholar

    [117]

    Volosniev A 2017 Few-body Syst. 58 54Google Scholar

    [118]

    Pan L, Liu Y, Hu H, Zhang Y, Chen S 2017 Phys. Rev. B 96 075149Google Scholar

    [119]

    Liu Y, Chen S, Zhang Y 2017 Phys. Rev. A 95 043628Google Scholar

  • [1] 翟荟. 基于冷原子的非平衡量子多体物理研究. 物理学报, 2023, 72(23): 230701. doi: 10.7498/aps.72.20231375
    [2] 于明生, 钱金平, 丁斯晔, 任启龙, 叶阳, 万宝年. 零维系统模型改进及其对EAST稳态运行区的分析和预测. 物理学报, 2023, 72(11): 115203. doi: 10.7498/aps.72.20230364
    [3] 翟荟. 杨振宁先生和冷原子物理. 物理学报, 2022, 71(18): 186701. doi: 10.7498/aps.71.20221322
    [4] 姚绍武, 曹洪, 岑理相. 一类多能级Rosen-Zener模型的精确解. 物理学报, 2019, 68(13): 133201. doi: 10.7498/aps.68.20190353
    [5] 施俊如, 王心亮, 管勇, 阮军, 刘丹丹, 白杨, 杨帆, 张辉, 余凤翔, 范思晨, 张首刚. 一种精确测量原子喷泉冷原子团温度的方法. 物理学报, 2019, 68(19): 190601. doi: 10.7498/aps.68.20190115
    [6] 陈丽娟, 鲁世平. 零维气候系统非线性模式的周期解问题. 物理学报, 2013, 62(20): 200201. doi: 10.7498/aps.62.200201
    [7] 徐园芬. 一维Tonks-Girardeau原子气区域中 Gross-Pitaevskii方程简化模型的精确行波解. 物理学报, 2013, 62(10): 100202. doi: 10.7498/aps.62.100202
    [8] 曾文丽, 马松华, 任清褒. (2+1)维 Bogoyavlenskii-Schiff 系统的精确解和孤子激发. 物理学报, 2012, 61(11): 110508. doi: 10.7498/aps.61.110508
    [9] 郭进利. 一个人类行为动力学模型及其精确解. 物理学报, 2010, 59(6): 3851-3855. doi: 10.7498/aps.59.3851
    [10] 马松华, 吴小红, 方建平, 郑春龙. (3+1)维Burgers系统的新精确解及其特殊孤子结构. 物理学报, 2008, 57(1): 11-17. doi: 10.7498/aps.57.11
    [11] 智红燕, 王 琪, 张鸿庆. (2+1) 维Broer-Kau-Kupershmidt方程一系列新的精确解. 物理学报, 2005, 54(3): 1002-1008. doi: 10.7498/aps.54.1002
    [12] 付文玉, 侯锡苗, 贺丽霞, 郑志刚. 少体硬球系统的动力学与统计研究. 物理学报, 2005, 54(6): 2552-2556. doi: 10.7498/aps.54.2552
    [13] 阮航宇, 陈一新. 具有物理背景的高维Painlevé可积模型. 物理学报, 2001, 50(4): 577-585. doi: 10.7498/aps.50.577
    [14] 孙久勋. 严格可解四参数双原子分子势函数. 物理学报, 1999, 48(11): 1992-1998. doi: 10.7498/aps.48.1992
    [15] 刘仁红, 谭维翰. 激光放大—维问题的解. 物理学报, 1995, 44(7): 1029-1034. doi: 10.7498/aps.44.1029
    [16] 李富斌. 非平衡涨落问题的微观唯象分析理论(Ⅱ)——物理系统中的非平衡涨落与由信息理论所求得的热传导精确结果的比较. 物理学报, 1989, 38(10): 1642-1647. doi: 10.7498/aps.38.1642
    [17] 熊小明, 周世勋. 强磁场中库仑相互作用的少体二维电子气的能量. 物理学报, 1987, 36(9): 1235-1240. doi: 10.7498/aps.36.1235
    [18] 丁涪江. 刚壁附近氢原子的精确解. 物理学报, 1984, 33(11): 1495-1500. doi: 10.7498/aps.33.1495
    [19] 李铁城, 张昭庆, 蒲富恪. 具L-近邻键的一维渗流模型临界指数的精确解. 物理学报, 1983, 32(10): 1273-1280. doi: 10.7498/aps.32.1273
    [20] 杜宜瑾, 陈立溁, 严祖同. 二维系统的热力学性质. 物理学报, 1982, 31(7): 939-944. doi: 10.7498/aps.31.939
计量
  • 文章访问数:  11374
  • PDF下载量:  237
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-09
  • 修回日期:  2019-01-07
  • 上网日期:  2019-02-01
  • 刊出日期:  2019-02-20

/

返回文章
返回