搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

S波段低磁场高效率相对论返波管振荡器研究

吴洋 周自刚

引用本文:
Citation:

S波段低磁场高效率相对论返波管振荡器研究

吴洋, 周自刚

S-band high-efficiency relativistic backward waveoscillator with low magnetic field

Wu Yang, Zhou Zi-Gang
PDF
HTML
导出引用
  • 针对传统相对论返波管振荡器低磁场工作束波转换效率较低的问题, 本文提出并研究了一种带中间调制腔链及TM02模式提取腔的相对论返波管模型: 中间调制腔链用于进一步群聚电子束, 提高电子束的基波调制深度; TM02模式的提取腔用于提高返波管的Q值, 增强提取腔中的驻波电场; 漂移段用于调节电子束在调制腔链中的群聚相位和提取腔中的换能相位. 在此基础上, 设计了一个S波段高效率相对论返波管振荡器, 器件输出微波功率4.2 GW, 频率2.38 GHz, 束波转换效率达到50%, 引导磁场强度0.7 T.
    New applications for high-power microwave (HPM) have aroused the intense interest in the development of HPM sources. The relativistic backward wave oscillator (RBWO), as one of the most promising HPM sources, has proved to be a competitive candidate for generating multi-gigawatt HPM at L, S, C, and X-band. But for the conventional RBWO, in order to maintain high conversion efficiency, a high enough magnetic field is required to confine the intense relativistic electron beam. Obviously, it can lead to high energy consumption and bulkiness. Therefore, to fulfill the requirements for applications, enhancing the conversion efficiency of the RBWO at low magnetic field has received much attention and has been investigated extensively.In this paper, we present a well-designed RBWO model with a cavity-chain modulator and a TM02 mode extractor to enhance the conversion efficiency at a low guiding magnetic field. The operation characteristics of the device are investigated in detail in this paper. Moreover, the function of each part of the device for enhancing the conversion efficiency is confirmed by the particle-in-cell simulation. In the device, the cavity-chain modulator is introduced to strengthen the beam bunching process. The TM02 extractor after the modulator increases the Q-factor of the RBWO due to its partial reflection to the outgoing microwave. The increase of the Q-factor can enhance the standing electric field in the extractor. If the phase is appropriate, the extractor can convert the kinetic beam power into the RF power efficiently. The drift tubes between the reflector, the modulator and the extractor are used to adjust the bunching phase and the conversion phase of the modulated electron beam in the RF field. Moreover, an S-band high efficiency RBWO is designed and verified by the particle-in-cell simulation. An output power of 4.2 GW at a frequency of 2.38 GHz is obtained in the simulation. And the conversion efficiency reaches 50% when the guiding magnetic field is 0.7 T.
      通信作者: 周自刚, zhouzigang1973@163.com
    • 基金项目: 国家自然科学基金(批准号: 11875228)资助的课题
      Corresponding author: Zhou Zi-Gang, zhouzigang1973@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11875228)
    [1]

    Benford J, Swegle J, Schamiloglu E 2007 High Power Microwaves (2nd edition) (New Mexico: CRC Press) p313

    [2]

    Bugaev S P, Cherepenin V A, Kanavets V I 1990 IEEE Trans. Plasma Sci. 18 525Google Scholar

    [3]

    Gunin A V, Klimov A I, Korovin S D, Kurkan I K, Pegel I V, Polevin S D, Roitman A M, Rostov V V, Stepchenko A S, Totmeninov E M 1998 IEEE Trans. Plasma Sci. 26 326Google Scholar

    [4]

    Friedman M, Krall J, Lau Y Y, Serlin V 1990 Rev. Sci. Instrum. 61 171Google Scholar

    [5]

    黄华, 罗雄, 雷禄容, 罗光耀, 张北镇, 金晓, 谭杰 2010 物理学报 59 1907Google Scholar

    Huang H, Luo X, Lei L R, Luo G Y, Zhang B Z, Jin X, Tan J 2010 Acta Phys. Sin. 59 1907Google Scholar

    [6]

    McCurdy A H, Armstrong C M, Bollen W M, Parker R K, Granatstein V L 1986 Phys. Rev. Lett. 57 2379Google Scholar

    [7]

    黄华, 吴洋, 刘振帮, 袁欢, 何琥, 李乐乐, 李正红, 金晓, 马弘舸 2018 物理学报 67 088402Google Scholar

    Huang H, Wu Y, Liu Z B, Yuan H, He H, Li L L, Li Z H, Jin X, Ma H G 2018 Acta Phys. Sin. 67 088402Google Scholar

    [8]

    Xiao R Z, Chen C H, Zhang X W, Shun J 2009 J. Appl. Phys. 105 053306Google Scholar

    [9]

    Xiao R Z, Chen C H, Zhang X W 2013 Appl. Phys. Lett. 102 133504Google Scholar

    [10]

    Zhang J, Jin Z X, Yang J H, Shu T, Zhang J D, Zhong H H 2015 IEEE Trans. Plasma Sci. 43 528Google Scholar

    [11]

    Vlasov A N, Shkvarunets A G 2000 IEEE Trans. Plasma Sci. 28 550Google Scholar

    [12]

    Ge X J, Zhong H H, Zhang J, Qiao B L 2013 Phys. Plasmas 20 023105Google Scholar

    [13]

    Li Z H, Zhou Z G, Qiu R 2014 Phys. Plasmas 21 063101Google Scholar

    [14]

    Jin Z X, Zhang J, Yang J H, Zhong H H, Qian B L, Shu T, Zhang J D, Zhou S Y, Xu L R 2011 Rev. Sci. Instrum. 82 084704Google Scholar

    [15]

    Teng Y, Song W, Sun J, Xiao R Z, Song Z M 2012 Phys. Plasmas 111 043303

    [16]

    Wu Y, Xie H Q, Li Z H, Zhang Y J, Ma Q S 2013 Phys. Plasmas 20 113102Google Scholar

    [17]

    Wu Y 2017 Phys. Plasmas 24 073105Google Scholar

    [18]

    李正红, 常安碧, 鞠炳全, 张永辉, 向飞, 赵殿林, 甘延青, 刘忠, 苏昶, 黄华 2007 物理学报 56 2603Google Scholar

    Li Z H, Chang A B, Ju B Q, Zhang Y H, Xiang F, Zhao D L, Gan Y Q, Liu Z, Su C, Huang H 2007 Acta Phys. Sin. 56 2603Google Scholar

    [19]

    Song W, Sun J, Shao H, Xiao R Z, Chen C H, Liu G Z 2012 J. Appl. Phys. 111 023302Google Scholar

    [20]

    Song W, Chen C H, Sun J, Zhang X W, Shao H, Song Z M, Huo S F, Shi Y C, Li X Z 2012 Phys. Plasmas 19 103111Google Scholar

  • 图 1  S波段低磁场高效率HPM振荡器模拟模型

    Fig. 1.  Model of the S-band high efficiency HPM oscillator with low magnetic field.

    图 2  不同相位Δ的调制电子束经中间腔调制后的演化规律

    Fig. 2.  The fundamental harmonic current distribution after the idler cavity with different phase.

    图 3  调制腔链中电流和纵向电场随时间的变化

    Fig. 3.  The temporal plots of the current and the longitudinal electric field in the cavity-chain modulator.

    图 4  调制电子束基波调制电流的演化规律

    Fig. 4.  The fundamental harmonic current distributions in three types of modulation structures.

    图 5  TM01和TM02提取腔的传输特性

    Fig. 5.  The transmission characteristics of the TM01 and TM02 extractor.

    图 6  采用TM01和TM02提取腔器件的频率响应

    Fig. 6.  The resonant characteristics of the device with TM01 and TM02 extractor.

    图 7  采用TM01和TM02提取腔器件的纵向电场分布

    Fig. 7.  The longitudinal electric field distributions in the device with TM01 and TM02 extractor.

    图 8  器件提取腔内的纵向电场幅值沿r向的分布

    Fig. 8.  The longitudinal electric field distribution along radial direction in the extractor.

    图 9  器件内的纵向电场幅值及基波调制电流的分布

    Fig. 9.  The distributions of the amplitude of the longitudinal electric field and the fundamental harmonic current in the device.

    图 10  提取腔中电流和纵向电场随时间的变化

    Fig. 10.  The temporal plots of the current and the longitudinal electric field in the extractor.

    图 11  器件内的净功率流沿z向的分布

    Fig. 11.  The net power flux distribution in the device along axial direction.

    图 12  器件输出微波功率与提取腔半径的关系

    Fig. 12.  The relation between the output power and the radius of the extractor.

    图 13  电功率、微波功率和收集极功率随时间的变化

    Fig. 13.  The temporal plots of the beam power, RF power and the dumped power.

    图 14  器件输出功率及效率与二极管电压的关系

    Fig. 14.  The relations of the output power and efficiency to the diode voltage.

  • [1]

    Benford J, Swegle J, Schamiloglu E 2007 High Power Microwaves (2nd edition) (New Mexico: CRC Press) p313

    [2]

    Bugaev S P, Cherepenin V A, Kanavets V I 1990 IEEE Trans. Plasma Sci. 18 525Google Scholar

    [3]

    Gunin A V, Klimov A I, Korovin S D, Kurkan I K, Pegel I V, Polevin S D, Roitman A M, Rostov V V, Stepchenko A S, Totmeninov E M 1998 IEEE Trans. Plasma Sci. 26 326Google Scholar

    [4]

    Friedman M, Krall J, Lau Y Y, Serlin V 1990 Rev. Sci. Instrum. 61 171Google Scholar

    [5]

    黄华, 罗雄, 雷禄容, 罗光耀, 张北镇, 金晓, 谭杰 2010 物理学报 59 1907Google Scholar

    Huang H, Luo X, Lei L R, Luo G Y, Zhang B Z, Jin X, Tan J 2010 Acta Phys. Sin. 59 1907Google Scholar

    [6]

    McCurdy A H, Armstrong C M, Bollen W M, Parker R K, Granatstein V L 1986 Phys. Rev. Lett. 57 2379Google Scholar

    [7]

    黄华, 吴洋, 刘振帮, 袁欢, 何琥, 李乐乐, 李正红, 金晓, 马弘舸 2018 物理学报 67 088402Google Scholar

    Huang H, Wu Y, Liu Z B, Yuan H, He H, Li L L, Li Z H, Jin X, Ma H G 2018 Acta Phys. Sin. 67 088402Google Scholar

    [8]

    Xiao R Z, Chen C H, Zhang X W, Shun J 2009 J. Appl. Phys. 105 053306Google Scholar

    [9]

    Xiao R Z, Chen C H, Zhang X W 2013 Appl. Phys. Lett. 102 133504Google Scholar

    [10]

    Zhang J, Jin Z X, Yang J H, Shu T, Zhang J D, Zhong H H 2015 IEEE Trans. Plasma Sci. 43 528Google Scholar

    [11]

    Vlasov A N, Shkvarunets A G 2000 IEEE Trans. Plasma Sci. 28 550Google Scholar

    [12]

    Ge X J, Zhong H H, Zhang J, Qiao B L 2013 Phys. Plasmas 20 023105Google Scholar

    [13]

    Li Z H, Zhou Z G, Qiu R 2014 Phys. Plasmas 21 063101Google Scholar

    [14]

    Jin Z X, Zhang J, Yang J H, Zhong H H, Qian B L, Shu T, Zhang J D, Zhou S Y, Xu L R 2011 Rev. Sci. Instrum. 82 084704Google Scholar

    [15]

    Teng Y, Song W, Sun J, Xiao R Z, Song Z M 2012 Phys. Plasmas 111 043303

    [16]

    Wu Y, Xie H Q, Li Z H, Zhang Y J, Ma Q S 2013 Phys. Plasmas 20 113102Google Scholar

    [17]

    Wu Y 2017 Phys. Plasmas 24 073105Google Scholar

    [18]

    李正红, 常安碧, 鞠炳全, 张永辉, 向飞, 赵殿林, 甘延青, 刘忠, 苏昶, 黄华 2007 物理学报 56 2603Google Scholar

    Li Z H, Chang A B, Ju B Q, Zhang Y H, Xiang F, Zhao D L, Gan Y Q, Liu Z, Su C, Huang H 2007 Acta Phys. Sin. 56 2603Google Scholar

    [19]

    Song W, Sun J, Shao H, Xiao R Z, Chen C H, Liu G Z 2012 J. Appl. Phys. 111 023302Google Scholar

    [20]

    Song W, Chen C H, Sun J, Zhang X W, Shao H, Song Z M, Huo S F, Shi Y C, Li X Z 2012 Phys. Plasmas 19 103111Google Scholar

  • [1] 华津宇, 盛政明. 电子束尾波对质子束自调制尾波相速度影响的理论和数值模拟研究. 物理学报, 2021, 70(13): 139401. doi: 10.7498/aps.70.20202086
    [2] 黄华, 吴洋, 刘振帮, 袁欢, 何琥, 李乐乐, 李正红, 金晓, 马弘舸. 锁频锁相的高功率微波器件技术研究. 物理学报, 2018, 67(8): 088402. doi: 10.7498/aps.67.20172684
    [3] 王淦平, 金晓, 黄华, 刘振帮. 强流相对论多注电子束在空心圆柱波导中的漂移. 物理学报, 2017, 66(4): 044102. doi: 10.7498/aps.66.044102
    [4] 陈永东, 吴洋, 谢鸿全, 李正红, 周自刚. 相对论速调管中间腔与调制电子束间的非线性互作用. 物理学报, 2013, 62(10): 104104. doi: 10.7498/aps.62.104104
    [5] 刘振帮, 金晓, 黄华, 陈怀璧, 王淦平. 强流多注相对论速调管中电子束特性的初步研究. 物理学报, 2012, 61(24): 248401. doi: 10.7498/aps.61.248401
    [6] 吴涛, 黄华, 王淦平, 金晓, 刘振帮, 陈昭福, 任屹灏, 陈永东, 王清源. 扇形多注强流相对论电子束的产生与传输研究. 物理学报, 2012, 61(18): 184218. doi: 10.7498/aps.61.184218
    [7] 闫春燕, 张秋菊, 罗牧华. 激光与相对论电子束相互作用中阿秒X射线脉冲的产生. 物理学报, 2011, 60(3): 035202. doi: 10.7498/aps.60.035202
    [8] 杜广星, 钱宝良. 准矩形截面强流相对论带状电子束的传输. 物理学报, 2010, 59(7): 4626-4633. doi: 10.7498/aps.59.4626
    [9] 刘静, 舒挺, 李志强. 层流平衡相对论电子束束流特性的数值计算. 物理学报, 2010, 59(3): 1895-1901. doi: 10.7498/aps.59.1895
    [10] 黄华, 罗雄, 雷禄容, 罗光耀, 张北镇, 金晓, 谭杰. 长脉冲相对论扩展互作用腔振荡器的初步研究. 物理学报, 2010, 59(3): 1907-1912. doi: 10.7498/aps.59.1907
    [11] 黄 华, 甘延青, 雷禄容, 金 晓, 鞠炳权, 向 飞, 冯弟超, 刘 忠. S波段相对论速调管振荡器研究. 物理学报, 2008, 57(3): 1765-1770. doi: 10.7498/aps.57.1765
    [12] 丁海兵, 庞文宁, 刘义保, 尚仁成. 液晶相位可变延迟器对自旋极化电子束极化方向的调制. 物理学报, 2005, 54(9): 4097-4100. doi: 10.7498/aps.54.4097
    [13] 胡 旻, 祝大军, 刘盛纲. 强流相对论电子束双腔纵向自调制研究. 物理学报, 2005, 54(6): 2633-2637. doi: 10.7498/aps.54.2633
    [14] 赵红东, 康志龙, 王胜利, 陈国鹰, 张以谟. 高速调制响应垂直腔面发射激光器中的微腔效应. 物理学报, 2003, 52(1): 77-80. doi: 10.7498/aps.52.77
    [15] 王平山, 余少英, 雷芳燕, 罗 敏, 马乔生, 谭 杰, 顾秉林. 导电栅网对相对论速调管中电子束的约束作用. 物理学报, 1998, 47(3): 485-493. doi: 10.7498/aps.47.485
    [16] 杨震华, 武玉璞. 储存环光速调管自由电子激光的电子束能量调制. 物理学报, 1997, 46(2): 279-286. doi: 10.7498/aps.46.279
    [17] 张世昌, 王文耀. 电磁波荡器及导引磁场中相对论电子三维运动的线性与非线性分析. 物理学报, 1991, 40(5): 748-755. doi: 10.7498/aps.40.748
    [18] 石秉仁. 相对论性电子束的类Tokamak平衡. 物理学报, 1983, 32(4): 507-514. doi: 10.7498/aps.32.507
    [19] 郭书印. 对头碰相对论电子束引起的不稳定性. 物理学报, 1982, 31(2): 143-149. doi: 10.7498/aps.31.143
    [20] 沈文达, 朱莳通. 库仑相互作用对相对论性电子束受激散射的影响. 物理学报, 1982, 31(2): 234-236. doi: 10.7498/aps.31.234
计量
  • 文章访问数:  7627
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-10
  • 修回日期:  2019-08-22
  • 上网日期:  2019-10-01
  • 刊出日期:  2019-10-05

/

返回文章
返回