搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

舰船磁场磁单极子阵列法建模技术

郭成豹 殷琦琦

引用本文:
Citation:

舰船磁场磁单极子阵列法建模技术

郭成豹, 殷琦琦

Magnetic monopole array model for modeling ship magnetic signatures

Guo Cheng-Bao, Yin Qi-Qi
PDF
HTML
导出引用
  • 针对现有舰船磁场等效源反演建模方法存在的精度较低和适应性不强的问题, 提出了一种舰船磁场磁单极子阵列反演建模新方法, 按照舰船铁磁结构布置磁单极子阵列, 采用正则化技术进行舰船磁场的反演建模. 建立了三种典型的磁单极子阵列形式: 舰船水线平面上的长方形阵列、包围船体的长方体阵列、按照舰船铁磁结构分布的三维船体阵列. 理论分析表明, 三维船体磁单极子阵列减少了等效磁源设置的盲目性, 所得到的等效磁源与真实磁源一致性高, 能够更大程度地复现舰船磁场完整信息. 利用典型虚拟舰船的磁场进行了验证试验, 结果表明所提出的三维船体磁单极子阵列比长方形或长方体阵列具有更高的精度和适应性, 特别是能实现舰船远磁场与近磁场、舰船上方和下方磁场之间的相互精确转换. 所提出的三维船体磁单极子阵列模型具有复杂度小, 建模简单, 布置灵活的独特优势, 为舰船磁场高精度反演建模、磁场定位等的数据处理和解释提供了新的技术选择.
    Aiming at the problems of low accuracy and low adaptability of the existing ship magnetic field inversion modeling methods with equivalent sources, a new method of inversion modeling of magnetic monopole array of ship magnetic fields is proposed. Three-dimensional ship magnetic monopole array is arranged according to the ship ferromagnetic structure, and the inversion prediction model of ship magnetic fields is established by regularization technology. Three typical forms of magnetic monopole arrays are established: rectangular magnetic monopole array on the horizontal surface of the draft line, cuboid magnetic monopole array enclosing the ship hull, three-dimensional ship magnetic monopole array distributed according to the ship’s ferromagnetic structure. The theoretical analysis shows that the three-dimensional ship magnetic monopole array reduces the blindness of the equivalent magnetic source setting, and the obtained equivalent magnetic source is highly consistent with the real magnetic source, which can reproduce the complete magnetic field information of the ship to a greater extent. The magnetic field of a typical virtual ship is applied to the validation test. The results show that the proposed three-dimensional ship magnetic monopole array has higher precision and adaptability than the rectangular or cuboid magnetic monopole array. In particular, the proposed three-dimensional ship magnetic monopole array can realize the mutual conversion between the near and far magnetic fields, and between the magnetic fields above and below the ship. The proposed three-dimensional ship magnetic monopole array model has the unique advantages of small complexity, simple modeling and flexible layout, and it provides an alternative method for the high-precision data processing and explanation to the inversion modeling of ship magnetic fields, ship magnetic field positioning, et al.
      通信作者: 郭成豹, 13720398858@163.com
    • 基金项目: 国家自然科学基金(批准号: 51277176)资助的课题.
      Corresponding author: Guo Cheng-Bao, 13720398858@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51277176).
    [1]

    Holmes J J 2007 Modeling A Ships Ferromagnetic Signatures (Maryland: Morgan & Claypool Publishers) p3

    [2]

    Holmes J J 2008 Reduction of a Ships Magnetic Field Signatures (Maryland: Morgan & Claypool Publishers) p8

    [3]

    Nixon D A, Baker F E 1981 J. Appl. Phys. 52 539Google Scholar

    [4]

    Kildishev A V, Nyenhuis J A, Morgan M A 2002 IEEE Trans. Magn. 38 2465Google Scholar

    [5]

    陈杰, 鲁习文 2009 物理学报 58 3839Google Scholar

    Chen J, Lu X W 2009 Acta Phys. Sin. 58 3839Google Scholar

    [6]

    Synnes S A 2008 IEEE Trans. Magn. 44 2277Google Scholar

    [7]

    Kamondetdacha R, Kildishev A V, Nyenhuis J A 2004 IE EE Trans. Magn. 40 2176Google Scholar

    [8]

    蒋敏志,林春生 2003 武汉理工大学学报·信息与管理工程版 25 168

    Jiang M Z, Lin C S 2003 Journal of WUT (Information & Management Engineering) 25 168

    [9]

    隗燕琳, 陈敬超, 李贵乙, 王彦东, 曾小军 2017 计算机测量与控制 25 213

    Wei Y L, Chen J C, Li G Y, Wang Y D, Zeng X J 2017 Computer Measurement & Control 25 213

    [10]

    林春生, 龚沈光 2007 舰船物理场(北京: 兵器工业出版社) p233

    Lin C S, Gong S G 2007 Ships Physical Fields (Beijing: The Publishing House of Ordnance Industry) p233 (in Chinese)

    [11]

    戴忠华, 周穗华, 单珊 2018 电子学报 46 1524Google Scholar

    Dai Z H, Zhou S H, Shan S 2018 Acta Electronica Sinica 46 1524Google Scholar

    [12]

    吴志东, 周穗华, 郭虎生 2013 武汉理工大学学报 35 67Google Scholar

    Wu Z D, Zhou S H, Guo H S 2013 Journal of Wuhan University of Technology 35 67Google Scholar

    [13]

    Alqadah H F, Valdivia N P, Williams E G 2016 Progress In Electromagnetics Research B 65 109Google Scholar

    [14]

    Chadebec O, Coulomb J L, Bongiraud J P, Cauffet G, Thiec P L 2002 IEEE Trans. Magn. 38 1005Google Scholar

    [15]

    Chadebec O, Couloumb J L, Cauffet G, Bongiraud J P 2003 IEEE Trans. Magn. 39 1634Google Scholar

    [16]

    Vuillermet Y, Chadebec O, Coulomb J L, Rouve L L, Cauffet G, Bongiraud J P, Demilier L 2008 IEEE Trans. Magn. 44 1054Google Scholar

    [17]

    Yang C S, Lee K J, Jung G, Chung H J, Park J S, Kim D H 2008 J. Appl. Phys. 103 07D905Google Scholar

    [18]

    郭成豹, 肖昌汉, 刘大明 2008 物理学报 57 4182Google Scholar

    Guo C B, Xiao C H, Liu D M 2008 Acta Phys. Sin. 57 4182Google Scholar

    [19]

    Dirac P A M 1931 Proc. Roy. Soc. A 133 60Google Scholar

    [20]

    Dirac P A M 1948 Phys. Rev. 74 817Google Scholar

    [21]

    Tikhonov A N, Arsenin V Y 1977 Math. Comput. 32 491

    [22]

    Hansen P C, O'Leary D P 1993 SIAM J. Sci. Comput. 14 1487Google Scholar

    [23]

    郭成豹, 周炜昶 2017 兵工学报 38 1988Google Scholar

    Guo C B, Zhou W C 2017 Acta Armamentarii 38 1988Google Scholar

    [24]

    郭成豹, 刘大明 2012 兵工学报 33 912

    Guo C B, Liu D M 2012 Acta Armamentarii 33 912

    [25]

    郭成豹, 刘大明 2014 兵工学报 35 1638Google Scholar

    Guo C B, Liu D M 2014 Acta Armamentarii 35 1638Google Scholar

    [26]

    Chadebec O, Coulomb J, Janet F 2006 IEEE Trans. Magn. 42 515Google Scholar

    [27]

    Morandi A, Fabbri M, Ribani P L 2010 IEEE Trans. Magn. 46 3848Google Scholar

    [28]

    Zhao K Z, Vouvakis M N, Lee J F 2005 IEEE Trans. Electromagn. Compat. 47 763Google Scholar

  • 图 1  磁单极子模型

    Fig. 1.  Magnetic monopole model.

    图 2  铁磁舰船航行通过一个磁传感器线阵

    Fig. 2.  Ferromagnetic ship runs over a line array of magnetic sensors.

    图 3  铁磁舰船及其下方的虚拟磁传感器长方形阵列

    Fig. 3.  Ferromagnetic ship stands over a virtual array of magnetic sensors.

    图 4  舰船结构上的磁单极子阵列分布

    Fig. 4.  Magnetic monopole array in the geometry of ship.

    图 5  机组和推进轴的磁单极子分布

    Fig. 5.  Magnetic monopoles for the engine block and the shaft.

    图 6  根据L曲线法得到正则化参数

    Fig. 6.  Regularization parameter obtained by the L-curve method.

    图 7  舰船磁场预测值和测量值的对比

    Fig. 7.  Comparison of predicted and measured values of ship's magnetic field.

    图 8  吃水线水平面上的长方形磁单极子阵列

    Fig. 8.  Rectangular magnetic monopole array on the horizontal surface of the draft line.

    图 9  包围船体的长方体磁单极子阵列

    Fig. 9.  Cuboid magnetic monopole array enclosing the ship hull.

    图 10  按照船体铁磁结构分布的三维船体磁单极子阵列

    Fig. 10.  Three-dimensional ship magnetic monopole array distributed according to the ferromagnetic structure of the ship hull.

    图 11  舰船磁场测量点分布俯视图

    Fig. 11.  Top view of the distribution of magnetic field measurement points on ship.

    图 12  舰船磁场测量点分布侧视图

    Fig. 12.  Side view of distribution of magnetic field measurement points on ship.

    图 13  舰船磁场测量点分布后视图

    Fig. 13.  Rear view of the distribution of magnetic field measurement points on ship.

    图 14  +1B深度典型测量点线上的舰船磁场预测值和真实值对比

    Fig. 14.  Comparison of predicted and real values of ship's magnetic field on typical measuring point line in +1B depth.

    图 15  +2B深度典型测量点线上的舰船磁场预测值和真实值对比

    Fig. 15.  Comparison of predicted and real values of ship's magnetic field on typical measuring point line in +2B depth.

    图 16  +5B深度典型测量点线上的舰船磁场预测值和真实值对比

    Fig. 16.  Comparison of predicted and real values of ship's magnetic field on typical measuring point line in +5B depth.

    表 1  验证试验的计算结果

    Table 1.  Results of the validation test.

    测量深度阵列形式正则化参数$\alpha$相对残差/%相对误差/%
    +1B+2B+5B–2B–5B
    +1B长方形0.13234.654.568.2528.2395.00101.76
    长方体0.00690.080.080.030.248.503.65
    三维船体0.00300.050.040.010.035.490.50
    +2B长方形0.01772.1513.282.1410.0391.0685.98
    长方体0.00260.091.230.020.0916.303.64
    三维船体0.00200.090.650.010.037.051.64
    +5B长方形0.01903.6434.5119.153.6280.1578.21
    长方体0.00280.5011.072.280.0725.9911.68
    三维船体0.00210.495.550.940.0417.133.12
    –2B长方形0.00201.54190.80114.6892.251.546.62
    长方体0.00240.0815.435.652.410.030.05
    三维船体0.00260.1110.203.631.250.080.05
    –5B长方形0.02164.3990.3186.8186.2929.794.39
    长方体0.00340.4629.8120.9716.427.010.11
    三维船体0.00210.4415.368.995.183.510.06
    下载: 导出CSV
  • [1]

    Holmes J J 2007 Modeling A Ships Ferromagnetic Signatures (Maryland: Morgan & Claypool Publishers) p3

    [2]

    Holmes J J 2008 Reduction of a Ships Magnetic Field Signatures (Maryland: Morgan & Claypool Publishers) p8

    [3]

    Nixon D A, Baker F E 1981 J. Appl. Phys. 52 539Google Scholar

    [4]

    Kildishev A V, Nyenhuis J A, Morgan M A 2002 IEEE Trans. Magn. 38 2465Google Scholar

    [5]

    陈杰, 鲁习文 2009 物理学报 58 3839Google Scholar

    Chen J, Lu X W 2009 Acta Phys. Sin. 58 3839Google Scholar

    [6]

    Synnes S A 2008 IEEE Trans. Magn. 44 2277Google Scholar

    [7]

    Kamondetdacha R, Kildishev A V, Nyenhuis J A 2004 IE EE Trans. Magn. 40 2176Google Scholar

    [8]

    蒋敏志,林春生 2003 武汉理工大学学报·信息与管理工程版 25 168

    Jiang M Z, Lin C S 2003 Journal of WUT (Information & Management Engineering) 25 168

    [9]

    隗燕琳, 陈敬超, 李贵乙, 王彦东, 曾小军 2017 计算机测量与控制 25 213

    Wei Y L, Chen J C, Li G Y, Wang Y D, Zeng X J 2017 Computer Measurement & Control 25 213

    [10]

    林春生, 龚沈光 2007 舰船物理场(北京: 兵器工业出版社) p233

    Lin C S, Gong S G 2007 Ships Physical Fields (Beijing: The Publishing House of Ordnance Industry) p233 (in Chinese)

    [11]

    戴忠华, 周穗华, 单珊 2018 电子学报 46 1524Google Scholar

    Dai Z H, Zhou S H, Shan S 2018 Acta Electronica Sinica 46 1524Google Scholar

    [12]

    吴志东, 周穗华, 郭虎生 2013 武汉理工大学学报 35 67Google Scholar

    Wu Z D, Zhou S H, Guo H S 2013 Journal of Wuhan University of Technology 35 67Google Scholar

    [13]

    Alqadah H F, Valdivia N P, Williams E G 2016 Progress In Electromagnetics Research B 65 109Google Scholar

    [14]

    Chadebec O, Coulomb J L, Bongiraud J P, Cauffet G, Thiec P L 2002 IEEE Trans. Magn. 38 1005Google Scholar

    [15]

    Chadebec O, Couloumb J L, Cauffet G, Bongiraud J P 2003 IEEE Trans. Magn. 39 1634Google Scholar

    [16]

    Vuillermet Y, Chadebec O, Coulomb J L, Rouve L L, Cauffet G, Bongiraud J P, Demilier L 2008 IEEE Trans. Magn. 44 1054Google Scholar

    [17]

    Yang C S, Lee K J, Jung G, Chung H J, Park J S, Kim D H 2008 J. Appl. Phys. 103 07D905Google Scholar

    [18]

    郭成豹, 肖昌汉, 刘大明 2008 物理学报 57 4182Google Scholar

    Guo C B, Xiao C H, Liu D M 2008 Acta Phys. Sin. 57 4182Google Scholar

    [19]

    Dirac P A M 1931 Proc. Roy. Soc. A 133 60Google Scholar

    [20]

    Dirac P A M 1948 Phys. Rev. 74 817Google Scholar

    [21]

    Tikhonov A N, Arsenin V Y 1977 Math. Comput. 32 491

    [22]

    Hansen P C, O'Leary D P 1993 SIAM J. Sci. Comput. 14 1487Google Scholar

    [23]

    郭成豹, 周炜昶 2017 兵工学报 38 1988Google Scholar

    Guo C B, Zhou W C 2017 Acta Armamentarii 38 1988Google Scholar

    [24]

    郭成豹, 刘大明 2012 兵工学报 33 912

    Guo C B, Liu D M 2012 Acta Armamentarii 33 912

    [25]

    郭成豹, 刘大明 2014 兵工学报 35 1638Google Scholar

    Guo C B, Liu D M 2014 Acta Armamentarii 35 1638Google Scholar

    [26]

    Chadebec O, Coulomb J, Janet F 2006 IEEE Trans. Magn. 42 515Google Scholar

    [27]

    Morandi A, Fabbri M, Ribani P L 2010 IEEE Trans. Magn. 46 3848Google Scholar

    [28]

    Zhao K Z, Vouvakis M N, Lee J F 2005 IEEE Trans. Electromagn. Compat. 47 763Google Scholar

  • [1] 武列列, 任益充, 薛飞. 基于铁磁扭摆振子的磁场测量及其应用. 物理学报, 2025, 74(3): . doi: 10.7498/aps.74.20241538
    [2] 戴忠华, 周穗华, 张晓兵. 多目标优化的舰船磁场建模方法. 物理学报, 2021, 70(16): 164101. doi: 10.7498/aps.70.20210334
    [3] 王力, 刘静思, 李吉, 周晓林, 陈向荣, 刘超飞, 刘伍明. 旋量玻色-爱因斯坦凝聚体拓扑性质的研究进展. 物理学报, 2020, 69(1): 010303. doi: 10.7498/aps.69.20191648
    [4] 宋其晖, 石万元. 横向静磁场对电磁悬浮液滴稳定性的影响. 物理学报, 2014, 63(24): 248504. doi: 10.7498/aps.63.248504
    [5] 毕传兴, 胡定玉, 张永斌, 徐亮. 基于等效源法和双面质点振速测量的声场分离方法. 物理学报, 2013, 62(8): 084301. doi: 10.7498/aps.62.084301
    [6] 邵建舟, 王永久. 整体单极子黑洞引力场中的加速效应. 物理学报, 2012, 61(11): 110402. doi: 10.7498/aps.61.110402
    [7] 向茂槐, 陈菊华, 王永久. 含整体单极子黑洞场中的吸附和辐射. 物理学报, 2011, 60(9): 090401. doi: 10.7498/aps.60.090401
    [8] 陈杰, 鲁习文. 舰船感应磁场预测的一种新方法. 物理学报, 2010, 59(1): 239-245. doi: 10.7498/aps.59.239
    [9] 陈杰, 鲁习文. 基于磁荷面分布的舰船磁场预测方法. 物理学报, 2009, 58(6): 3839-3843. doi: 10.7498/aps.58.3839
    [10] 孟庆苗, 苏九清, 蒋继建. 带有整体磁单极子的Barriola-Vilenkin黑洞时空中静质量不为零的粒子的量子隧穿辐射. 物理学报, 2007, 56(7): 3723-3726. doi: 10.7498/aps.56.3723
    [11] 许光明, 郑佳伟, 刘 勇, 崔建忠. 电磁场作用下溶质元素在镁合金AZ61的分布. 物理学报, 2007, 56(7): 4247-4251. doi: 10.7498/aps.56.4247
    [12] 包卫平, 许光明, 班春燕, 崔建忠. 静磁场对镁合金凝固组织的影响. 物理学报, 2004, 53(6): 2024-2028. doi: 10.7498/aps.53.2024
    [13] 朱云峰, 余洪伟. 单极子荷电黑洞时空背景中有质量标量场的衰减. 物理学报, 2002, 51(9): 1933-1936. doi: 10.7498/aps.51.1933
    [14] 胡国琦, 李康. 有磁单极子存在下的Aharnov-Bohm效应. 物理学报, 2002, 51(6): 1208-1213. doi: 10.7498/aps.51.1208
    [15] 林子扬, 项 颖, 张介立, 马仕永, 徐则达. 相位延迟法平行排列丝状液晶在静磁场中扭曲效应研究. 物理学报, 1999, 48(10): 1898-1903. doi: 10.7498/aps.48.1898
    [16] 刘公强, Chen S.Tsai. 斜向静磁场中的薄膜磁光效应和静磁波传播特性. 物理学报, 1998, 47(6): 997-1005. doi: 10.7498/aps.47.997
    [17] 李义兵, 李少平. 各向异性磁介质中的静磁交换模. 物理学报, 1989, 38(7): 1177-1181. doi: 10.7498/aps.38.1177
    [18] 张鹏翔, 曹克定. 静磁波法研究材料的磁性. 物理学报, 1985, 34(11): 1407-1412. doi: 10.7498/aps.34.1407
    [19] 石康杰. 运动磁单极子的规范势. 物理学报, 1983, 32(11): 1426-1434. doi: 10.7498/aps.32.1426
    [20] 任朗. 长金属椭球体顶点处线形单极子天线的辐射问题. 物理学报, 1963, 19(3): 169-175. doi: 10.7498/aps.19.169
计量
  • 文章访问数:  9713
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-15
  • 修回日期:  2019-03-12
  • 上网日期:  2019-06-01
  • 刊出日期:  2019-06-05

/

返回文章
返回