搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

流感病毒和冠状病毒的细胞表面结合与内化

鲍美美 杨恺 元冰

引用本文:
Citation:

流感病毒和冠状病毒的细胞表面结合与内化

鲍美美, 杨恺, 元冰

Influenza virus and coronavirus: Cellular binding and internalization

Bao Mei-Mei, Yang Kai, Yuan Bing
PDF
HTML
导出引用
  • 病毒是一种在活细胞内寄生并以复制方式增殖的非细胞型生物. 不同病毒侵入细胞的方式不同, 但大都需要通过结合至细胞表面特定的受体蛋白或脂质结构来实现细胞内化, 从而启动入侵程序和感染宿主细胞. 因此揭示病毒结合和内化侵入细胞的具体过程及机制有助于从源头上开发靶向药物或疫苗. 本文以流感病毒和冠状病毒为例, 首先介绍了流感病毒的结构, 其与细胞膜上特定种类蛋白或脂质结构的结合方式, 其完成细胞内吞的途径及诱导其内化的细胞因子种类, 以及侵入细胞后的作用过程, 继而对冠状病毒尤其针对目前仍在全球范围内肆意传播的新型冠状病毒(SARS-CoV-2), 扼要阐述了其结构特点、与细胞受体血管紧张素转化酶ACE2的结合及实现细胞内化的研究进展.
    Viruses are acellular organisms that must be parasitized in living cells and proliferated by replication. Although different viruses invade cells in different ways, they mainly initiate the invasion process through binding to specific receptor proteins or lipid structures on the cell surface for the following cellular internalization. Thus revealing the interaction process and underlying mechanism between viruses and cell membranes will be helpful in developing targeted drugs or vaccines from the source. In this review, the influenza virus and coronavirus are taken for example. We will first discuss the structure of influenza viruses, their binding modes with cell membranes, the way of realizing cell endocytosis and the cytokines involved in this process. After that, recent research progress of coronavirus especially the novel coronavirus SARS-CoV-2, including its structural characteristics, its binding with cell receptor ACE2 and the following cellular internalization, is briefly introduced.
      通信作者: 杨恺, yangkai@suda.edu.cn ; 元冰, yuanbing@suda.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 21422404, 21774092, U1532108, U1932121, 21728502)和江苏省自然科学基金 (批准号: BK20171207, BK20171210)资助的课题
      Corresponding author: Yang Kai, yangkai@suda.edu.cn ; Yuan Bing, yuanbing@suda.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 21422404, 21774092, U1532108, U1932121, 21728502) and the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20171207, BK20171210)
    [1]

    Sieczkarski S B, Whittaker G R 2002 J. Gen. Virol. 83 1535Google Scholar

    [2]

    Nabi I R, Le P U 2003 J. Cell Biol. 161 673Google Scholar

    [3]

    Seto W H, Tsang D, Yung R W H, Ching T Y, Ng T K, Ho M, Ho L M, Peiris J S M, Auth A E S G H 2003 Lancet 361 1519Google Scholar

    [4]

    Wenzel R P, Edmond M B 2009 N. Engl. J. Med. 361 1991Google Scholar

    [5]

    de Groot R J, Baker S C, Baric R S, Brown C S, Drosten C, Enjuanes L, Fouchier R A M, Galiano M, Gorbalenya A E, Memish Z A, Perlman S, Poon L L M, Snijder E J, Stephens G M, Woo P C Y, Zaki A M, Zambon M, Ziebuhr J 2013 J. Virol. 87 7790Google Scholar

    [6]

    Gao R B, Cao B, Hu Y W, et al. 2013 N. Engl. J. Med. 368 1888Google Scholar

    [7]

    Song F X, Shi N N, Shan F, Zhang Z Y, Shen J, Lu H Z, Ling Y, Jiang Y B, Shi Y X 2020 Radiology 295 210Google Scholar

    [8]

    Li M, Ding H M, Lin M H, Yin F F, Song L, Mao X H, Li F, Ge Z L, Wang L H, Zuo X L, Ma Y Q, Fan C H 2019 J. Am. Chem. Soc. 141 18910Google Scholar

    [9]

    Wang H, Jiang C 2009 Sci. China. C Life Sci. 52 464Google Scholar

    [10]

    Lakadamyali M, Rust M J, Babcock H P, Zhuang X 2003 Proc. Natl. Acad. Sci. U. S. A. 100 9280Google Scholar

    [11]

    Fontana J, Steven A C 2013 J. Virol. 87 5621Google Scholar

    [12]

    Liu S L, Zhang Z L, Tian Z Q, Zhao H S, Liu H, Sun E Z, Xiao G F, Zhang W, Wang H Z, Pang D W 2011 ACS Nano 6 141Google Scholar

    [13]

    Babcock H P, Chen C, Zhuang X W 2004 Biophys. J. 87 2749Google Scholar

    [14]

    Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, Shi Z, Hu Z, Zhong W, Xiao G 2020 Cell Res. 30 269Google Scholar

    [15]

    Lu H 2020 Biosci. Trends 14 69Google Scholar

    [16]

    Li R F, Hou Y L, Huang J C, Pan W Q, Ma Q H, Shi Y X, Li C F, Zhao J, Jia Z H, Jiang H M, Zheng K, Huang S X, Dai J, Li X B, Hou X T, Wang L, Zhong N A, Yang Z F 2020 Pharmacol. Res. 156 104761Google Scholar

    [17]

    Dadonaite B, Vijayakrishnan S, Fodor E, Bhella D, Hutchinson E C 2016 J. Gen. Virol. 97 1755Google Scholar

    [18]

    Mosley V M, Wyckoff R W G 1946 Nature 157 263Google Scholar

    [19]

    Taylor A R, Sharp D G, Beard D, Beard J W, Dingle J H, Feller A E 1943 J. Immunol. 47 261Google Scholar

    [20]

    Sharp D G, Taylor A R, McLean I W, Jr Beard D, Beard J W, Fellew A E, Dingle J H 1943 Science 98 307Google Scholar

    [21]

    Choppin P W, Murphy J S, Tamm I 1960 J. Exp. Med. 112 945Google Scholar

    [22]

    Kilbourne E D, Murphy J S 1960 J. Exp. Med. 111 387Google Scholar

    [23]

    Kumlin U, Olofsson S, Dimock K, Arnberg N 2008 Influenza Other Resp. 2 147Google Scholar

    [24]

    Rogers G N, D'Souza B L 1989 Virology 173 317Google Scholar

    [25]

    Connor R J, Kawaoka Y, Webster R G, Paulson J C 1994 Virology 205 17Google Scholar

    [26]

    Peng W J, de Vries R P, Grant O C, Thompson A J, McBride R, Tsogtbaatar B, Lee P S, Razi N, Wilson I A, Woods R J, Paulson J C 2017 Cell Host Microbe 21 23Google Scholar

    [27]

    Ng W C, Liong S, Tate M D, Irimura T, Denda-Nagai K, Brooks A G, Londrigan S L, Reading P C 2014 J. Virol. 88 1659Google Scholar

    [28]

    Goronzy I N, Rawle R J, Boxer S G, Kasson P M 2018 Chem. Sci. 9 2340Google Scholar

    [29]

    Ding H M, Li J, Chen N, Hu X J, Yang X F, Guo L J, Li Q, Zuo X L, Wang L H, Ma Y Q, Fan C H 2018 Acs Central Sci 4 1344Google Scholar

    [30]

    Verma D K, Gupta D, Lal S K 2018 Viruses 10 650Google Scholar

    [31]

    Byrd-Leotis L, Jia N, Dutta S, Trost J F, Gao C, Cummings S F, Braulke T, Muller-Loennies S, Heimburg-Molinaro J, Steinhauer D A, Cummings R D 2019 Sci. Adv. 5 eaav2554Google Scholar

    [32]

    Ng W C, Londrigan S L, Nasr N, Cunningham A L, Turville S, Brooks A G, Reading P C 2016 J. Virol. 90 206Google Scholar

    [33]

    Oh N, Park J H 2014 Int. J. Nanomed. 9 51Google Scholar

    [34]

    Geiser M 2010 J. Aerosol Med. Pulm. Drug Deliv. 23 207Google Scholar

    [35]

    Dourmashkin R R, Tyrrell D A 1974 J. Gen. Virol. 24 129Google Scholar

    [36]

    Matlin K S, Reggio H, Helenius A, Simons K 1981 J. Cell Biol. 91 601Google Scholar

    [37]

    Conner S D, Schmid S L 2003 Nature 422 37Google Scholar

    [38]

    Nichols B J, Lippincott-Schwartz J 2001 Trends Cell Biol. 11 406Google Scholar

    [39]

    Li Y, Yue T T, Yang K, Zhang X R 2012 Biomaterials 33 4965Google Scholar

    [40]

    Rust M J, Lakadamyali M, Zhang F, Zhuang X W 2004 Nat. Struct. Mol. Biol. 11 567Google Scholar

    [41]

    Sieczkarski S B, Whittaker G R 2002 J. Virol. 76 10455Google Scholar

    [42]

    Sun E Z, Liu A A, Zhang Z L, Liu S L, Tian Z Q, Pang D W 2017 ACS Nano 11 4395Google Scholar

    [43]

    Thomsen P, Roepstorff K, Stahlhut M, van Deurs B, Riezman H 2002 Mol. Biol. Cell 13 238Google Scholar

    [44]

    Schnitzer J E, Oh P, Pinney E, Allard J 1994 J. Cell Biol. 127 1217Google Scholar

    [45]

    Orlandi P A, Fishman P H 1998 J. Cell Biol. 141 905Google Scholar

    [46]

    Nunes-Correia I, Eulalio A, Nir S, De Lima M C P 2004 Cell. Mol. Biol. Lett. 9 47

    [47]

    Mercer J, Helenius A 2009 Nat. Cell Biol. 11 510Google Scholar

    [48]

    de Vries E, Tscherne D M, Wienholts M J, Cobos-Jimenez V, Scholte F, Garcia-Sastre A, Rottier P J, de Haan C A 2011 PLoS Pathog. 7 e1001329Google Scholar

    [49]

    Rossman J S, Leser G P, Lamb R A 2012 J. Virol. 86 10950Google Scholar

    [50]

    Carroll S M, Paulson J C 1985 Virus Res. 3 165Google Scholar

    [51]

    Williams S P, Robertson J S 1993 Virology 196 660Google Scholar

    [52]

    de Vries E, de Vries R P, Wienholts M J, Floris C E, Jacobs M S, van den Heuvel A, Rottier P J, de Haan C A 2012 Proc. Natl. Acad. Sci. U. S. A. 109 7457Google Scholar

    [53]

    Conner S D, Schmid S L 2003 J. Cell Biol. 162 773Google Scholar

    [54]

    Wang G, Jiang L, Wang J, Zhang J, Kong F, Li Q, Yan Y, Huang S, Zhao Y, Liang L, Li J, Sun N, Hu Y, Shi W, Deng G, Chen P, Liu L, Zeng X, Tian G, Bu Z, Chen H, Li C 2020 J. Virol. 94Google Scholar

    [55]

    Chen C, Zhuang X W 2008 Proc. Natl. Acad. Sci. U.S.A. 105 11790Google Scholar

    [56]

    Tayyari F, Marchant D, Moraes T J, Duan W M, Mastrangelo P, Hegele R G 2011 Nat. Med. 17 1132Google Scholar

    [57]

    Melen K, Tynell J, Fagerlund R, Roussel P, Hernandez-Verdun D, Julkunen I 2012 Virol J. 9 167Google Scholar

    [58]

    Murayama R, Harada Y, Shibata T, Kuroda K, Hayakawa S, Shimizu K, Tanaka T 2007 Biochem. Biophys. Res. Commun. 362 880Google Scholar

    [59]

    Chan C M, Chu H, Zhang A J, Leung L H, Sze K H, Kao R Y, Chik K K, To K K, Chan J F, Chen H, Jin D Y, Liu L, Yuen K Y 2016 Virology 494 78Google Scholar

    [60]

    Ji Q J, Yuan B, Lu X M, Yang K, Ma Y Q 2016 Small 12 1140Google Scholar

    [61]

    Geijtenbeek T B H, Gringhuis S I 2009 Nat. Rev. Immunol. 9 465Google Scholar

    [62]

    van Kooyk Y 2008 Biochem. Soc. Trans. 36 1478Google Scholar

    [63]

    Robinson M J, Sancho D, Slack E C, LeibundGut-Landmann S, Sousa C R E 2006 Nat. Immunol. 7 1258Google Scholar

    [64]

    Drickamer K 1992 Nature 360 183Google Scholar

    [65]

    Reading P C, Miller J L, Anders E M 2000 J. Virol. 74 5190Google Scholar

    [66]

    Valladeau J, Ravel O, Dezutter-Dambuyant C, Moore K, Kleijmeer M, Liu Y, Duvert-Frances V, Vincent C, Schmitt D, Davoust J, Caux C, Lebecque S, Saeland S 2000 Immunity 12 71Google Scholar

    [67]

    Cohen G B, Ren R B, Baltimore D 1995 Cell 80 237Google Scholar

    [68]

    Fujioka Y, Tsuda M, Nanbo A, Hattori T, Sasaki J, Sasaki T, Miyazaki T, Ohba Y 2013 Nat Commun 4 2763Google Scholar

    [69]

    Fujioka Y, Nishide S, Ose T, et al. 2018 Cell Host Microbe 23 809Google Scholar

    [70]

    Ehrhardt C, Marjuki H, Wolff T, Nuernberg B, Planz O, Pleschka S, Ludwig S 2006 Cell. Microbiol. 8 1336Google Scholar

    [71]

    Zhu L, Ly H, Liang Y 2014 J. Virol. 88 417Google Scholar

    [72]

    Chu V C, Whittaker G R 2004 Proc. Natl. Acad. Sci. U. S. A. 101 18153Google Scholar

    [73]

    Lu X, Xu P P, Ding H M, Yu Y S, Huo D, Ma Y Q 2019 Nat Commun 10 4520Google Scholar

    [74]

    Hamilton B S, Whittaker G R, Daniel S 2012 Viruses 4 1144Google Scholar

    [75]

    Fodor E 2013 Acta Virol. 57 113Google Scholar

    [76]

    Akarsu H, Burmeister W P, Petosa C, Petit I, Muller C W, Ruigrok R W H, Baudin F 2003 EMBO J. 22 4646Google Scholar

    [77]

    Dou D, Revol R, Ostbye H, Wang H, Daniels R 2018 Front Immunol 9 1581Google Scholar

    [78]

    Zhang J, Pekosz A, Lamb R A 2000 J. Virol. 74 4634Google Scholar

    [79]

    Dahmani I, Ludwig K, Chiantia S 2019 Biosci. Rep. 39 16Google Scholar

    [80]

    Pillay T S 2020 J. Clin. Pathol. 73 366Google Scholar

    [81]

    Han Q, Lin Q, Jin S, You L 2020 J. Infect. 80 373Google Scholar

    [82]

    Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao G F, Tan W, China Novel Coronavirus I, Research T 2020 N. Engl. J. Med. 382 727Google Scholar

    [83]

    Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, Bi Y, Ma X, Zhan F, Wang L, Hu T, Zhou H, Hu Z, Zhou W, Zhao L, Chen J, Meng Y, Wang J, Lin Y, Yuan J, Xie Z, Ma J, Liu W J, Wang D, Xu W, Holmes E C, Gao G F, Wu G, Chen W, Shi W, Tan W 2020 Lancet 395 565Google Scholar

    [84]

    Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, Schiergens T S, Herrler G, Wu N H, Nitsche A, Muller M A, Drosten C, Pohlmann S 2020 Cell 181 271Google Scholar

    [85]

    Wang Q, Qiu Y, Li J Y, Zhou Z J, Liao C H, Ge X Y 2020 Virol. Sin. 35 337Google Scholar

    [86]

    Cheng Z, Zhou J, To K K, Chu H, Li C, Wang D, Yang D, Zheng S, Hao K, Bosse Y, Obeidat M, Brandsma C A, Song Y Q, Chen Y, Zheng B J, Li L, Yuen K Y 2015 J. Infect. Dis. 212 1214Google Scholar

    [87]

    Offringa A, Montijn R, Singh S, Paul M, Pinto Y M, Pinto-Sietsma S J 2020 Eur Heart J Cardiovasc Pharmacother pvaa053 doi: 10.1093/ehjcvp/pvaa053

    [88]

    Sohail A, Nutini A 2020 Prog. Biophys. Mol. Biol. 155 29Google Scholar

    [89]

    Ng M L, Tan S H, See E E, Ooi E E, Ling A E 2003 J. Med. Virol. 71 323Google Scholar

    [90]

    Yang Z Y, Huang Y, Ganesh L, Leung K, Kong W P, Schwartz O, Subbarao K, Nabel G J 2004 J. Virol. 78 5642Google Scholar

    [91]

    Huang I C, Bosch B J, Li F, Li W H, Lee K H, Ghiran S, Vasilieva N, Dermody T S, Harrison S C, Dormitzer P R, Farzan M, Rottier P J M, Choe H 2006 J. Biol. Chem. 281 3198Google Scholar

    [92]

    Inoue Y, Tanaka N, Tanaka Y, Inoue S, Morita K, Zhuang M, Hattori T, Sugamura K 2007 J. Virol. 81 8722Google Scholar

    [93]

    Wang H L, Yang P, Liu K T, Guo F, Zhang Y L, Zhang G Y, Jiang C Y 2008 Cell Res. 18 290Google Scholar

    [94]

    Hofmann H, Pohlmann S 2004 Trends Microbiol. 12 466Google Scholar

  • 图 1  流感病毒的结构与形状[17,21] (a) 丝状、杆状与球状流感病毒模型图, 流感病毒是包被病毒, 最外层是脂质膜, 膜上含有HA和NA两种糖蛋白及M2通道蛋白, 膜下是基质蛋白M1, 丝状病毒的基因组位于远端, 球状病毒的基因组位于中心; (b) 丝状病毒和(c) 球状病毒的电子显微镜照片

    Fig. 1.  Composition and shape of influenza virus[17,21]: (a) Filamentous, rod-shaped and globular influenza virus models; (b), (c) representative electron microscopy images of filamentous and globular viruses, respectively.

    图 2  流感病毒在细胞表面结合及内化示意图. 流感病毒与细胞表面的糖蛋白或糖脂末端的唾液酸、或者磷酸化的糖蛋白、抑或是C型凝集素Langerin发生结合, 之后在G蛋白偶联受体FFAR2、表达于膜上的核仁蛋白、适配体蛋白Epsin1和EPS15、C型凝集素Langerin等细胞因子的参与下, 通过网格蛋白介导的方式发生内吞. 胞内Ca2+的增加可以促进流感病毒通过网格蛋白或非网格蛋白的方式侵入细胞, 另外膜上脂筏结构也参与病毒的吸附和内化过程

    Fig. 2.  Schematic diagram of influenza virus binding and internalization at cellular surface. The influenza virus binds on the cell surface with sialic acid at the end of a glycoprotein or lipid, phosphorylated glycoprotein, or C-type lectin Langerin, and then enters into the cell through clathrin-mediated endocytosis with the participation of cytokines such as G protein coupled receptor FFAR2, nucleolus protein expressed in membrane, adapter proteins Epsin1 and EPS15, or C-type lectin Langerin. An increased amount of intracellular Ca2+ promotes the entry of influenza virus in the clathrin or non-clathrin way. Lipid rafts also play roles in the process of virus adsorption and internalization.

    图 3  SARS-CoV-2的病毒结构[80]及透射电子显微镜图像[82] (a) SARS-CoV-2的结构示意图; (b), (c) SARS-CoV-2在不同放大倍数下的透射电子显微镜图像

    Fig. 3.  Structure[80] and transmission electron microscopy images[82] of SARS-CoV-2: (a) Structure of SARS-CoV-2; (b), (c) visualization of SARS-CoV-2 under transmission electron microscope.

    表 1  流感病毒与宿主细胞结合的靶向分子

    Table 1.  Targeting molecules for influenza virus binding to host cells.

    流感病毒作用点宿主细胞结合点阶段文献
    HA唾液酸结合[23]
    HA磷酸化的糖蛋白结合[31]
    HA凝集素结合[32]
    下载: 导出CSV

    表 2  参与流感病毒内化的细胞因子

    Table 2.  Cytokines involved in influenza virus internali-zation.

    细胞因子阶段功能
    N-连接的糖蛋白内化可能存在病毒侵入细胞必要的
    特定碳水化合物构象[72]
    AP2 B1内化与FFAR2, β-arrestin1
    形成信号级联反应[54]
    Epsin 1内化聚集网格蛋白, 启动形成CCPs[55]
    核仁蛋白内化与HA直接结合帮助病毒侵入细胞[59]
    C型凝集素内化骨髓的内吞受体, 将病毒
    转至早期内吞体[32]
    Ca2+内化激活PIP5 K-PLC信号通路
    调节CME和CIE路径[68]
    脂筏内化提供信号平台激活EGFR信号通路[30]
    下载: 导出CSV
  • [1]

    Sieczkarski S B, Whittaker G R 2002 J. Gen. Virol. 83 1535Google Scholar

    [2]

    Nabi I R, Le P U 2003 J. Cell Biol. 161 673Google Scholar

    [3]

    Seto W H, Tsang D, Yung R W H, Ching T Y, Ng T K, Ho M, Ho L M, Peiris J S M, Auth A E S G H 2003 Lancet 361 1519Google Scholar

    [4]

    Wenzel R P, Edmond M B 2009 N. Engl. J. Med. 361 1991Google Scholar

    [5]

    de Groot R J, Baker S C, Baric R S, Brown C S, Drosten C, Enjuanes L, Fouchier R A M, Galiano M, Gorbalenya A E, Memish Z A, Perlman S, Poon L L M, Snijder E J, Stephens G M, Woo P C Y, Zaki A M, Zambon M, Ziebuhr J 2013 J. Virol. 87 7790Google Scholar

    [6]

    Gao R B, Cao B, Hu Y W, et al. 2013 N. Engl. J. Med. 368 1888Google Scholar

    [7]

    Song F X, Shi N N, Shan F, Zhang Z Y, Shen J, Lu H Z, Ling Y, Jiang Y B, Shi Y X 2020 Radiology 295 210Google Scholar

    [8]

    Li M, Ding H M, Lin M H, Yin F F, Song L, Mao X H, Li F, Ge Z L, Wang L H, Zuo X L, Ma Y Q, Fan C H 2019 J. Am. Chem. Soc. 141 18910Google Scholar

    [9]

    Wang H, Jiang C 2009 Sci. China. C Life Sci. 52 464Google Scholar

    [10]

    Lakadamyali M, Rust M J, Babcock H P, Zhuang X 2003 Proc. Natl. Acad. Sci. U. S. A. 100 9280Google Scholar

    [11]

    Fontana J, Steven A C 2013 J. Virol. 87 5621Google Scholar

    [12]

    Liu S L, Zhang Z L, Tian Z Q, Zhao H S, Liu H, Sun E Z, Xiao G F, Zhang W, Wang H Z, Pang D W 2011 ACS Nano 6 141Google Scholar

    [13]

    Babcock H P, Chen C, Zhuang X W 2004 Biophys. J. 87 2749Google Scholar

    [14]

    Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, Shi Z, Hu Z, Zhong W, Xiao G 2020 Cell Res. 30 269Google Scholar

    [15]

    Lu H 2020 Biosci. Trends 14 69Google Scholar

    [16]

    Li R F, Hou Y L, Huang J C, Pan W Q, Ma Q H, Shi Y X, Li C F, Zhao J, Jia Z H, Jiang H M, Zheng K, Huang S X, Dai J, Li X B, Hou X T, Wang L, Zhong N A, Yang Z F 2020 Pharmacol. Res. 156 104761Google Scholar

    [17]

    Dadonaite B, Vijayakrishnan S, Fodor E, Bhella D, Hutchinson E C 2016 J. Gen. Virol. 97 1755Google Scholar

    [18]

    Mosley V M, Wyckoff R W G 1946 Nature 157 263Google Scholar

    [19]

    Taylor A R, Sharp D G, Beard D, Beard J W, Dingle J H, Feller A E 1943 J. Immunol. 47 261Google Scholar

    [20]

    Sharp D G, Taylor A R, McLean I W, Jr Beard D, Beard J W, Fellew A E, Dingle J H 1943 Science 98 307Google Scholar

    [21]

    Choppin P W, Murphy J S, Tamm I 1960 J. Exp. Med. 112 945Google Scholar

    [22]

    Kilbourne E D, Murphy J S 1960 J. Exp. Med. 111 387Google Scholar

    [23]

    Kumlin U, Olofsson S, Dimock K, Arnberg N 2008 Influenza Other Resp. 2 147Google Scholar

    [24]

    Rogers G N, D'Souza B L 1989 Virology 173 317Google Scholar

    [25]

    Connor R J, Kawaoka Y, Webster R G, Paulson J C 1994 Virology 205 17Google Scholar

    [26]

    Peng W J, de Vries R P, Grant O C, Thompson A J, McBride R, Tsogtbaatar B, Lee P S, Razi N, Wilson I A, Woods R J, Paulson J C 2017 Cell Host Microbe 21 23Google Scholar

    [27]

    Ng W C, Liong S, Tate M D, Irimura T, Denda-Nagai K, Brooks A G, Londrigan S L, Reading P C 2014 J. Virol. 88 1659Google Scholar

    [28]

    Goronzy I N, Rawle R J, Boxer S G, Kasson P M 2018 Chem. Sci. 9 2340Google Scholar

    [29]

    Ding H M, Li J, Chen N, Hu X J, Yang X F, Guo L J, Li Q, Zuo X L, Wang L H, Ma Y Q, Fan C H 2018 Acs Central Sci 4 1344Google Scholar

    [30]

    Verma D K, Gupta D, Lal S K 2018 Viruses 10 650Google Scholar

    [31]

    Byrd-Leotis L, Jia N, Dutta S, Trost J F, Gao C, Cummings S F, Braulke T, Muller-Loennies S, Heimburg-Molinaro J, Steinhauer D A, Cummings R D 2019 Sci. Adv. 5 eaav2554Google Scholar

    [32]

    Ng W C, Londrigan S L, Nasr N, Cunningham A L, Turville S, Brooks A G, Reading P C 2016 J. Virol. 90 206Google Scholar

    [33]

    Oh N, Park J H 2014 Int. J. Nanomed. 9 51Google Scholar

    [34]

    Geiser M 2010 J. Aerosol Med. Pulm. Drug Deliv. 23 207Google Scholar

    [35]

    Dourmashkin R R, Tyrrell D A 1974 J. Gen. Virol. 24 129Google Scholar

    [36]

    Matlin K S, Reggio H, Helenius A, Simons K 1981 J. Cell Biol. 91 601Google Scholar

    [37]

    Conner S D, Schmid S L 2003 Nature 422 37Google Scholar

    [38]

    Nichols B J, Lippincott-Schwartz J 2001 Trends Cell Biol. 11 406Google Scholar

    [39]

    Li Y, Yue T T, Yang K, Zhang X R 2012 Biomaterials 33 4965Google Scholar

    [40]

    Rust M J, Lakadamyali M, Zhang F, Zhuang X W 2004 Nat. Struct. Mol. Biol. 11 567Google Scholar

    [41]

    Sieczkarski S B, Whittaker G R 2002 J. Virol. 76 10455Google Scholar

    [42]

    Sun E Z, Liu A A, Zhang Z L, Liu S L, Tian Z Q, Pang D W 2017 ACS Nano 11 4395Google Scholar

    [43]

    Thomsen P, Roepstorff K, Stahlhut M, van Deurs B, Riezman H 2002 Mol. Biol. Cell 13 238Google Scholar

    [44]

    Schnitzer J E, Oh P, Pinney E, Allard J 1994 J. Cell Biol. 127 1217Google Scholar

    [45]

    Orlandi P A, Fishman P H 1998 J. Cell Biol. 141 905Google Scholar

    [46]

    Nunes-Correia I, Eulalio A, Nir S, De Lima M C P 2004 Cell. Mol. Biol. Lett. 9 47

    [47]

    Mercer J, Helenius A 2009 Nat. Cell Biol. 11 510Google Scholar

    [48]

    de Vries E, Tscherne D M, Wienholts M J, Cobos-Jimenez V, Scholte F, Garcia-Sastre A, Rottier P J, de Haan C A 2011 PLoS Pathog. 7 e1001329Google Scholar

    [49]

    Rossman J S, Leser G P, Lamb R A 2012 J. Virol. 86 10950Google Scholar

    [50]

    Carroll S M, Paulson J C 1985 Virus Res. 3 165Google Scholar

    [51]

    Williams S P, Robertson J S 1993 Virology 196 660Google Scholar

    [52]

    de Vries E, de Vries R P, Wienholts M J, Floris C E, Jacobs M S, van den Heuvel A, Rottier P J, de Haan C A 2012 Proc. Natl. Acad. Sci. U. S. A. 109 7457Google Scholar

    [53]

    Conner S D, Schmid S L 2003 J. Cell Biol. 162 773Google Scholar

    [54]

    Wang G, Jiang L, Wang J, Zhang J, Kong F, Li Q, Yan Y, Huang S, Zhao Y, Liang L, Li J, Sun N, Hu Y, Shi W, Deng G, Chen P, Liu L, Zeng X, Tian G, Bu Z, Chen H, Li C 2020 J. Virol. 94Google Scholar

    [55]

    Chen C, Zhuang X W 2008 Proc. Natl. Acad. Sci. U.S.A. 105 11790Google Scholar

    [56]

    Tayyari F, Marchant D, Moraes T J, Duan W M, Mastrangelo P, Hegele R G 2011 Nat. Med. 17 1132Google Scholar

    [57]

    Melen K, Tynell J, Fagerlund R, Roussel P, Hernandez-Verdun D, Julkunen I 2012 Virol J. 9 167Google Scholar

    [58]

    Murayama R, Harada Y, Shibata T, Kuroda K, Hayakawa S, Shimizu K, Tanaka T 2007 Biochem. Biophys. Res. Commun. 362 880Google Scholar

    [59]

    Chan C M, Chu H, Zhang A J, Leung L H, Sze K H, Kao R Y, Chik K K, To K K, Chan J F, Chen H, Jin D Y, Liu L, Yuen K Y 2016 Virology 494 78Google Scholar

    [60]

    Ji Q J, Yuan B, Lu X M, Yang K, Ma Y Q 2016 Small 12 1140Google Scholar

    [61]

    Geijtenbeek T B H, Gringhuis S I 2009 Nat. Rev. Immunol. 9 465Google Scholar

    [62]

    van Kooyk Y 2008 Biochem. Soc. Trans. 36 1478Google Scholar

    [63]

    Robinson M J, Sancho D, Slack E C, LeibundGut-Landmann S, Sousa C R E 2006 Nat. Immunol. 7 1258Google Scholar

    [64]

    Drickamer K 1992 Nature 360 183Google Scholar

    [65]

    Reading P C, Miller J L, Anders E M 2000 J. Virol. 74 5190Google Scholar

    [66]

    Valladeau J, Ravel O, Dezutter-Dambuyant C, Moore K, Kleijmeer M, Liu Y, Duvert-Frances V, Vincent C, Schmitt D, Davoust J, Caux C, Lebecque S, Saeland S 2000 Immunity 12 71Google Scholar

    [67]

    Cohen G B, Ren R B, Baltimore D 1995 Cell 80 237Google Scholar

    [68]

    Fujioka Y, Tsuda M, Nanbo A, Hattori T, Sasaki J, Sasaki T, Miyazaki T, Ohba Y 2013 Nat Commun 4 2763Google Scholar

    [69]

    Fujioka Y, Nishide S, Ose T, et al. 2018 Cell Host Microbe 23 809Google Scholar

    [70]

    Ehrhardt C, Marjuki H, Wolff T, Nuernberg B, Planz O, Pleschka S, Ludwig S 2006 Cell. Microbiol. 8 1336Google Scholar

    [71]

    Zhu L, Ly H, Liang Y 2014 J. Virol. 88 417Google Scholar

    [72]

    Chu V C, Whittaker G R 2004 Proc. Natl. Acad. Sci. U. S. A. 101 18153Google Scholar

    [73]

    Lu X, Xu P P, Ding H M, Yu Y S, Huo D, Ma Y Q 2019 Nat Commun 10 4520Google Scholar

    [74]

    Hamilton B S, Whittaker G R, Daniel S 2012 Viruses 4 1144Google Scholar

    [75]

    Fodor E 2013 Acta Virol. 57 113Google Scholar

    [76]

    Akarsu H, Burmeister W P, Petosa C, Petit I, Muller C W, Ruigrok R W H, Baudin F 2003 EMBO J. 22 4646Google Scholar

    [77]

    Dou D, Revol R, Ostbye H, Wang H, Daniels R 2018 Front Immunol 9 1581Google Scholar

    [78]

    Zhang J, Pekosz A, Lamb R A 2000 J. Virol. 74 4634Google Scholar

    [79]

    Dahmani I, Ludwig K, Chiantia S 2019 Biosci. Rep. 39 16Google Scholar

    [80]

    Pillay T S 2020 J. Clin. Pathol. 73 366Google Scholar

    [81]

    Han Q, Lin Q, Jin S, You L 2020 J. Infect. 80 373Google Scholar

    [82]

    Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao G F, Tan W, China Novel Coronavirus I, Research T 2020 N. Engl. J. Med. 382 727Google Scholar

    [83]

    Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, Bi Y, Ma X, Zhan F, Wang L, Hu T, Zhou H, Hu Z, Zhou W, Zhao L, Chen J, Meng Y, Wang J, Lin Y, Yuan J, Xie Z, Ma J, Liu W J, Wang D, Xu W, Holmes E C, Gao G F, Wu G, Chen W, Shi W, Tan W 2020 Lancet 395 565Google Scholar

    [84]

    Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, Schiergens T S, Herrler G, Wu N H, Nitsche A, Muller M A, Drosten C, Pohlmann S 2020 Cell 181 271Google Scholar

    [85]

    Wang Q, Qiu Y, Li J Y, Zhou Z J, Liao C H, Ge X Y 2020 Virol. Sin. 35 337Google Scholar

    [86]

    Cheng Z, Zhou J, To K K, Chu H, Li C, Wang D, Yang D, Zheng S, Hao K, Bosse Y, Obeidat M, Brandsma C A, Song Y Q, Chen Y, Zheng B J, Li L, Yuen K Y 2015 J. Infect. Dis. 212 1214Google Scholar

    [87]

    Offringa A, Montijn R, Singh S, Paul M, Pinto Y M, Pinto-Sietsma S J 2020 Eur Heart J Cardiovasc Pharmacother pvaa053 doi: 10.1093/ehjcvp/pvaa053

    [88]

    Sohail A, Nutini A 2020 Prog. Biophys. Mol. Biol. 155 29Google Scholar

    [89]

    Ng M L, Tan S H, See E E, Ooi E E, Ling A E 2003 J. Med. Virol. 71 323Google Scholar

    [90]

    Yang Z Y, Huang Y, Ganesh L, Leung K, Kong W P, Schwartz O, Subbarao K, Nabel G J 2004 J. Virol. 78 5642Google Scholar

    [91]

    Huang I C, Bosch B J, Li F, Li W H, Lee K H, Ghiran S, Vasilieva N, Dermody T S, Harrison S C, Dormitzer P R, Farzan M, Rottier P J M, Choe H 2006 J. Biol. Chem. 281 3198Google Scholar

    [92]

    Inoue Y, Tanaka N, Tanaka Y, Inoue S, Morita K, Zhuang M, Hattori T, Sugamura K 2007 J. Virol. 81 8722Google Scholar

    [93]

    Wang H L, Yang P, Liu K T, Guo F, Zhang Y L, Zhang G Y, Jiang C Y 2008 Cell Res. 18 290Google Scholar

    [94]

    Hofmann H, Pohlmann S 2004 Trends Microbiol. 12 466Google Scholar

  • [1] 曹文静, 刘小菲, 韩卓, 冯鑫, 张琳, 刘肖凡, 许小可, 吴晔. 新型冠状病毒肺炎疫情确诊病例的统计分析及自回归建模. 物理学报, 2020, 69(9): 090203. doi: 10.7498/aps.69.20200503
    [2] 李盈科, 赵时, 楼一均, 高道舟, 杨琳, 何岱海. 新型冠状病毒肺炎的流行病学参数与模型. 物理学报, 2020, 69(9): 090202. doi: 10.7498/aps.69.20200389
    [3] 王聪, 严洁, 王旭, 李敏. 新型冠状病毒肺炎早期时空传播特征分析. 物理学报, 2020, 69(8): 080701. doi: 10.7498/aps.69.20200285
    [4] 李冀鹏, 洪峰, 白薇, 廖敬仪, 张彦如, 周涛. 评估新型冠状病毒地区防控效果的一种近似方法. 物理学报, 2020, 69(10): 100201. doi: 10.7498/aps.69.20200441
    [5] 鲁延玲, 蒋国平, 宋玉蓉. 自适应网络中病毒传播的稳定性和分岔行为研究. 物理学报, 2013, 62(13): 130202. doi: 10.7498/aps.62.130202
    [6] 邓奇湘, 贾贞, 谢梦舒, 陈彦飞. 基于有向网络的Email病毒传播模型及其震荡吸引子研究. 物理学报, 2013, 62(2): 020203. doi: 10.7498/aps.62.020203
    [7] 胡恒恺, 王开, 杨光, 刘茜, 裴文江, 仇慎伟, 蔚承建, 张毅锋. 基于交通流量的病毒爆发动力行为研究. 物理学报, 2012, 61(20): 200209. doi: 10.7498/aps.61.200209
    [8] 巩永旺, 宋玉蓉, 蒋国平. 移动环境下网络病毒传播模型及其稳定性研究. 物理学报, 2012, 61(11): 110205. doi: 10.7498/aps.61.110205
    [9] 仇慎伟, 王开, 刘茜, 裴文江, 胡恒凯, 杨光, 蔚承建, 张毅锋. 基于交通流量的病毒扩散动力学研究. 物理学报, 2012, 61(15): 150201. doi: 10.7498/aps.61.150201
    [10] 李辉, 段兆文, 窦硕星, 王鹏业. 利用轨迹自动识别方法研究单细胞内表皮生长因子受体的运输. 物理学报, 2012, 61(6): 068701. doi: 10.7498/aps.61.068701
    [11] 王亚奇, 蒋国平. 基于元胞自动机考虑传播延迟的复杂网络病毒传播研究. 物理学报, 2011, 60(8): 080510. doi: 10.7498/aps.60.080510
    [12] 王亚奇, 蒋国平. 考虑网络流量的无标度网络病毒免疫策略研究. 物理学报, 2011, 60(6): 060202. doi: 10.7498/aps.60.060202
    [13] 宋玉蓉, 蒋国平, 徐加刚. 一种基于元胞自动机的自适应网络病毒传播模型. 物理学报, 2011, 60(12): 120509. doi: 10.7498/aps.60.120509
    [14] 刘娟, 高洁. 甲型流感病毒DNA序列的长记忆ARFIMA模型. 物理学报, 2011, 60(4): 048702. doi: 10.7498/aps.60.048702
    [15] 王亚奇, 蒋国平. 复杂网络中考虑不完全免疫的病毒传播研究. 物理学报, 2010, 59(10): 6734-6743. doi: 10.7498/aps.59.6734
    [16] 宋玉蓉, 蒋国平. 具有非均匀传输和抗攻击差异的网络病毒传播模型. 物理学报, 2010, 59(11): 7546-7551. doi: 10.7498/aps.59.7546
    [17] 王亚奇, 蒋国平. 同时考虑传染媒介和传播延迟的复杂网络病毒传播行为研究. 物理学报, 2010, 59(10): 6725-6733. doi: 10.7498/aps.59.6725
    [18] 裴伟东, 刘忠信, 陈增强, 袁著祉. 无标度网络中最大传染能力限定的病毒传播问题研究. 物理学报, 2008, 57(11): 6777-6785. doi: 10.7498/aps.57.6777
    [19] 许 丹, 李 翔, 汪小帆. 复杂网络病毒传播的局域控制研究. 物理学报, 2007, 56(3): 1313-1317. doi: 10.7498/aps.56.1313
    [20] 白永强, 唐爱辉, 王世强, 朱 星. 单个心肌细胞内钙波的微观动力学研究. 物理学报, 2007, 56(6): 3607-3612. doi: 10.7498/aps.56.3607
计量
  • 文章访问数:  17734
  • PDF下载量:  299
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-21
  • 修回日期:  2020-07-30
  • 上网日期:  2020-10-12
  • 刊出日期:  2020-10-20

/

返回文章
返回