搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

耗散响应理论及其在开放系统中的应用

陈宇

引用本文:
Citation:

耗散响应理论及其在开放系统中的应用

陈宇

Dissipative linear response theory and its appications in open quantum systems

Chen Yu
PDF
HTML
导出引用
  • 近些年来, 随着实验技术的进步, 对量子多体系统的耗散控制能力得到了增强, 同时耗散动力学过程表征技术方面的实验也有了较大进展. 实验上的进展驱使我们在理论上建立量子多体系统的耗散动力学计算体系. 最近我们发现, 通过把系统和环境之间的相互作用看成对系统的一个微扰, 可以得到一般性的耗散响应理论. 通过这一响应理论, 可以回答物理可观测量以及熵在耗散下一定时间尺度内的动力学演化的问题. 本文建立了非Markov 环境下的一般理论, 并讨论了何时可以取到 Markov 近似, 同时综述了这种方法在计算强关联体系的耗散动力学、强相互作用开放体系的熵的动力学演化等方面的应用.
    With the recent development of experimental technology, the ability to control the dissipation in quantum many-body system is greatly enhanced. Meanwhile, many new breakthroughs are achieved in detecting the quantum states and others. All these advances make it necessary to establish a new theory for calculating the dissipative dynamics in strongly correlated sstems. Very recently, we found that by taking the interactions between the system and the bath as a perturbation, a systematic dissipative response theory can be established. In this new approach, the calculation of dissipative dynamics for any physical observables and the entropies can be converted into the calculation of certain correlation functions in initial states. Then we discuss how Markovian approximation at low temperature limit and at high temperature limit can be reached Also, we review the progress of the dissipative dynamics in open Bose-Hubbard model. In the fourth section, we review recent progress of entropy dynamics of quench dynamics of an open quantum system. Finally, we draw a conclusion and discuss possible development in the future.
      通信作者: 陈宇, ychen@gscaep.ac.cn
    • 基金项目: 北京市自然科学基金重点专项(批准号: Z180013)和国家自然科学基金重点项目(批准号: 11734010)资助的课题
      Corresponding author: Chen Yu, ychen@gscaep.ac.cn
    • Funds: Project supported by the Key Program of the Natural Science Foundation of Beijing, China (Grant No. Z180013) and the Key Program of the National Natural Science Foundation of China (Grant No. 11734010).
    [1]

    Mahan G D 1981 Many Particle Physics (New York and London: Plenum Press)

    [2]

    Pan L, Chen X, Chen Y, Zhai H 2020 Nat. Phys. 16 767Google Scholar

    [3]

    Chen Y 2021 JHEP 04 215

    [4]

    Feynman R P, Vernon Jr F L 1963 Ann. Phys. 24 118Google Scholar

    [5]

    Caldeira A O, Leggett A J 1983 Phys. A 121 587Google Scholar

    [6]

    Bouganne R, Aguilera M B, Ghermaoui A, Beugnon J, Gerbier F 2020 Nat. Phys. 16 21Google Scholar

    [7]

    Syassen N, Bauer D M, Lettner M, Volz T, Dietze D, GarcÍa- ripoll J J, Cirac J I, Rempe G, Dürr S 2008 Science 320 1329

    [8]

    Barontini G, Labouvie R, Stubenrauch F, Vogler A, Guarrera V, Ott H 2013 Phys. Rev. Lett. 110 035302Google Scholar

    [9]

    Tomita T, Nakajima S, Danshita I, Takasu Y, Takahashi Y 2017 Sci. Adv. 99 e1701513

    [10]

    Sponselee K, Freystatzky L, Abeln B, Diem M, Hundt B, Kochanke A, Ponath T, Santral B, Mathey L, Sengstock K, and Becker C 2018 Quantum Sci. Technol. 4 014002Google Scholar

    [11]

    Li J, Harter A K, Liu J, de Moel L, Joglekar Y N, Luo L 2019 Nat. Commun. 10 855Google Scholar

    [12]

    Tomita T, Nakajima S, Takasu Y, Takahashi Y 2019 Phys. Rev. A 99 031601Google Scholar

    [13]

    Cai Z, Barthel T 2013 Phys. Rev. Lett. 111 150403Google Scholar

    [14]

    Poletti D, Barmettler P, Georges A, Kollath C 2013 Phys. Rev. Lett. 111 195301Google Scholar

    [15]

    Sachdev S 1999 Quantum Phase Transitions (Cambridge: Cambridge University Press)

    [16]

    Bardeen J M, Carter B, Hawking S 1973 Commun. Math. Phys. 31 161Google Scholar

    [17]

    Hawking S 1971 Phys. Rev. Lett. 26 1344Google Scholar

    [18]

    Hawking S 1974 Nature 248 30Google Scholar

    [19]

    Hawking S 1975 Commun. Math. Phys. 43 199Google Scholar

    [20]

    Christodoulou D 1970 Phys. Rev. Lett. 25 1596Google Scholar

    [21]

    Christodoulou D, Ruffini R 1971 Phys. Rev. D 4 3552Google Scholar

    [22]

    Bekenstein J D 1972 Lett. Nuovo Cimento 4 737Google Scholar

    [23]

    Bekenstein J D 1973 Phys. Rev. D 7 2333

    [24]

    Hawking S 1976 Phys. Rev. D 14 2460Google Scholar

    [25]

    Page D N 1993 Phys. Rev. Lett. 71 3743Google Scholar

    [26]

    Strominger A, Vafa C 1996 Phys. Lett. B 379 99Google Scholar

    [27]

    Dabholkar A, Gomes J, Murthy S 2015 JHEP 03 074

    [28]

    Gubser S S, Klebanov I R, Polyakov A M 1998 Phys. Lett. B 428 105Google Scholar

    [29]

    Witten E 1998 Adv. Theor. Math. Phys. 2 253Google Scholar

    [30]

    Maldacena J 1999 Int. J. Theor. Phys. 38 1113Google Scholar

    [31]

    Kitaev A talk at KITP 2015 http://online.kitp.ucsb.edu/online/entangled15/kitaev/ [2021-9-1]

    [32]

    Kitaev A talk at KITP 2015 http://online.kitp.ucsb.edu/online/entangled15/kitaev2/ [2021-9-1]

    [33]

    Ye J, Sachdev S 1993 Phys. Rev. Lett. 70 3339Google Scholar

    [34]

    Maldacena J, Stanford D 2016 Phys. Rev. D 94 106002Google Scholar

    [35]

    Kitaev A, Suh S J 2018 JHEP 05 183

    [36]

    Maldacena J, Stanford D, Yang Z 2016 PTEP 2016 12C104

    [37]

    Jakiw R 1985 Nucl. Phys. B 252 343Google Scholar

    [38]

    Teitelboim C 1983 Phys. Lett. B 126 41Google Scholar

    [39]

    Gross D J, Rosenhaus V 2017 JHEP 05 092

    [40]

    Gu Y, Lucas A, Qi X L 2017 JHEP 09 120

    [41]

    Huang Y, Gu Y 2017 Phys. Rev. D 100 041901

    [42]

    Liu C, Chen X, Balents L 2018 Phys. Rev. B 97 245126Google Scholar

    [43]

    Zhang P 2019 Phys. Rev. B 100 245104Google Scholar

    [44]

    Chen Y, Qi X L, Zhang P 2020 JHEP 06 121

    [45]

    Zhang P, Liu C, Chen X 2020 SciPost Phys. 8 094Google Scholar

    [46]

    Qi X L, Zhang P 2020 JHEP 05 129

    [47]

    Haldar A, Bera S, Banerjee S 2020 Phys. Rev. Res. 2 033505Google Scholar

    [48]

    Zhang P 2020 JHEP 06 143

    [49]

    Penington G 2020 JHEP 09 002

    [50]

    Almheiri A, Engelhardt N, Marolf D, Maxfield H 2019 JHEP 12 063

    [51]

    Almheiri A, Mahajan R, Maldacena J, Zhao Y 2020 JHEP 03 149

    [52]

    Dadras P, Kitaev A 2021 JHEP 03 198

    [53]

    Su K, Zhang P, Zhai H 2021 JHEP 06 156

  • 图 1  耗散费曼图图形规则演示图

    Fig. 1.  Illustrations of the diagram rules of the dissipative Feynman diagrams.

    图 2  (10)式的图形表达. 这一图形法则可以用于高阶图的展开

    Fig. 2.  Diagram expressions of Eq. (10).

    图 3  第二Renyi熵的指数的耗散费曼图

    Fig. 3.  Dissipative diagrams of the exponential of the second Renyi entropy.

    图 4  (a)红色为0动量粒子数衰变的数据, 蓝色为动量空间中的粒子数宽度随时间变化的曲线; (b)拟合的不同晶格强度下的Bose-Hubbard模型中的0动量粒子数衰变曲线中的参数 $ \eta $. 这里的反常维度应该在量子临界点处最小. 图(b)的小图里两个箭头所在的晶格强度就是量子临界点所在的位置[2]

    Fig. 4.  (a) Red curve shows the decay of zero momentum particle occupation. The blue curve shows how the width of particle momentum distribution evolutes over time. The solid line is our theoretical prediction. (b) Theoretical curve with experimental data for zero momentum particle decay for different parameters. In the inset figure, we shows the anomalous dimension eta extracted from experimental data and we can see its minimal being around quantum critical region[2].

    图 5  当环境比SYK系统温度高时系统的熵随时间的变化 (a)环境和系统的谱函数; (b)系统的熵随时间的演化, 可以看到经过初期的平方增长后变为线性增大. 系统的温度$ \beta =10 $, 相互作用强度 $ J=4 $; 环境温度$ {\beta }_{\mathrm{E}}=2 $, 相互作用强度 $J'=8$. 该图引用自文献[3]

    Fig. 5.  (a)Spectral functions of the environment and the system; (b) entropy dynamics after the quench interaction between the system and the environment. Here the temperature of the environment is higher than the system’s initial temperature. The entropy dynamics shows a typical thermalization case. Cited from Ref. [3].

    图 6  (a)系统的谱和环境的谱; (b)“黑洞蒸发”的熵的变化图. 系统的温度$ \beta =2 $, 相互作用强度 $ J=2 $; 环境的温度$ {\beta }_{\mathrm{E}}=20 $, 相互作用强度 ${J}'=2$. 该图引自文献[3]

    Fig. 6.  (a) Spectral functions of the environment and the system; (b) entropy dynamics after the quench interaction between the system and the environment. Here the temperature of the environment is lower than the system’s initial temperature. The entropy dynamics shows a typical cooling case. Here it can be compared with “Black Hole Evaporation” and the entropy dynamics looks like a Page curve. Cited from Ref. [3].

  • [1]

    Mahan G D 1981 Many Particle Physics (New York and London: Plenum Press)

    [2]

    Pan L, Chen X, Chen Y, Zhai H 2020 Nat. Phys. 16 767Google Scholar

    [3]

    Chen Y 2021 JHEP 04 215

    [4]

    Feynman R P, Vernon Jr F L 1963 Ann. Phys. 24 118Google Scholar

    [5]

    Caldeira A O, Leggett A J 1983 Phys. A 121 587Google Scholar

    [6]

    Bouganne R, Aguilera M B, Ghermaoui A, Beugnon J, Gerbier F 2020 Nat. Phys. 16 21Google Scholar

    [7]

    Syassen N, Bauer D M, Lettner M, Volz T, Dietze D, GarcÍa- ripoll J J, Cirac J I, Rempe G, Dürr S 2008 Science 320 1329

    [8]

    Barontini G, Labouvie R, Stubenrauch F, Vogler A, Guarrera V, Ott H 2013 Phys. Rev. Lett. 110 035302Google Scholar

    [9]

    Tomita T, Nakajima S, Danshita I, Takasu Y, Takahashi Y 2017 Sci. Adv. 99 e1701513

    [10]

    Sponselee K, Freystatzky L, Abeln B, Diem M, Hundt B, Kochanke A, Ponath T, Santral B, Mathey L, Sengstock K, and Becker C 2018 Quantum Sci. Technol. 4 014002Google Scholar

    [11]

    Li J, Harter A K, Liu J, de Moel L, Joglekar Y N, Luo L 2019 Nat. Commun. 10 855Google Scholar

    [12]

    Tomita T, Nakajima S, Takasu Y, Takahashi Y 2019 Phys. Rev. A 99 031601Google Scholar

    [13]

    Cai Z, Barthel T 2013 Phys. Rev. Lett. 111 150403Google Scholar

    [14]

    Poletti D, Barmettler P, Georges A, Kollath C 2013 Phys. Rev. Lett. 111 195301Google Scholar

    [15]

    Sachdev S 1999 Quantum Phase Transitions (Cambridge: Cambridge University Press)

    [16]

    Bardeen J M, Carter B, Hawking S 1973 Commun. Math. Phys. 31 161Google Scholar

    [17]

    Hawking S 1971 Phys. Rev. Lett. 26 1344Google Scholar

    [18]

    Hawking S 1974 Nature 248 30Google Scholar

    [19]

    Hawking S 1975 Commun. Math. Phys. 43 199Google Scholar

    [20]

    Christodoulou D 1970 Phys. Rev. Lett. 25 1596Google Scholar

    [21]

    Christodoulou D, Ruffini R 1971 Phys. Rev. D 4 3552Google Scholar

    [22]

    Bekenstein J D 1972 Lett. Nuovo Cimento 4 737Google Scholar

    [23]

    Bekenstein J D 1973 Phys. Rev. D 7 2333

    [24]

    Hawking S 1976 Phys. Rev. D 14 2460Google Scholar

    [25]

    Page D N 1993 Phys. Rev. Lett. 71 3743Google Scholar

    [26]

    Strominger A, Vafa C 1996 Phys. Lett. B 379 99Google Scholar

    [27]

    Dabholkar A, Gomes J, Murthy S 2015 JHEP 03 074

    [28]

    Gubser S S, Klebanov I R, Polyakov A M 1998 Phys. Lett. B 428 105Google Scholar

    [29]

    Witten E 1998 Adv. Theor. Math. Phys. 2 253Google Scholar

    [30]

    Maldacena J 1999 Int. J. Theor. Phys. 38 1113Google Scholar

    [31]

    Kitaev A talk at KITP 2015 http://online.kitp.ucsb.edu/online/entangled15/kitaev/ [2021-9-1]

    [32]

    Kitaev A talk at KITP 2015 http://online.kitp.ucsb.edu/online/entangled15/kitaev2/ [2021-9-1]

    [33]

    Ye J, Sachdev S 1993 Phys. Rev. Lett. 70 3339Google Scholar

    [34]

    Maldacena J, Stanford D 2016 Phys. Rev. D 94 106002Google Scholar

    [35]

    Kitaev A, Suh S J 2018 JHEP 05 183

    [36]

    Maldacena J, Stanford D, Yang Z 2016 PTEP 2016 12C104

    [37]

    Jakiw R 1985 Nucl. Phys. B 252 343Google Scholar

    [38]

    Teitelboim C 1983 Phys. Lett. B 126 41Google Scholar

    [39]

    Gross D J, Rosenhaus V 2017 JHEP 05 092

    [40]

    Gu Y, Lucas A, Qi X L 2017 JHEP 09 120

    [41]

    Huang Y, Gu Y 2017 Phys. Rev. D 100 041901

    [42]

    Liu C, Chen X, Balents L 2018 Phys. Rev. B 97 245126Google Scholar

    [43]

    Zhang P 2019 Phys. Rev. B 100 245104Google Scholar

    [44]

    Chen Y, Qi X L, Zhang P 2020 JHEP 06 121

    [45]

    Zhang P, Liu C, Chen X 2020 SciPost Phys. 8 094Google Scholar

    [46]

    Qi X L, Zhang P 2020 JHEP 05 129

    [47]

    Haldar A, Bera S, Banerjee S 2020 Phys. Rev. Res. 2 033505Google Scholar

    [48]

    Zhang P 2020 JHEP 06 143

    [49]

    Penington G 2020 JHEP 09 002

    [50]

    Almheiri A, Engelhardt N, Marolf D, Maxfield H 2019 JHEP 12 063

    [51]

    Almheiri A, Mahajan R, Maldacena J, Zhao Y 2020 JHEP 03 149

    [52]

    Dadras P, Kitaev A 2021 JHEP 03 198

    [53]

    Su K, Zhang P, Zhai H 2021 JHEP 06 156

  • [1] 陈若凡. 时间演化矩阵乘积算符方法及其在量子开放系统中的应用. 物理学报, 2023, 72(12): 120201. doi: 10.7498/aps.72.20222267
    [2] 李蕊轩, 张勇. 熵在非晶材料合成中的作用. 物理学报, 2017, 66(17): 177101. doi: 10.7498/aps.66.177101
    [3] 徐红梅, 金永镐, 郭树旭. 电压控制不连续导电模式DC-DC变换器的熵特性研究. 物理学报, 2013, 62(24): 248401. doi: 10.7498/aps.62.248401
    [4] 冯维, 丁辉, 林昊, 罗辽复. λ噬菌体溶源/裂解转换调控与定态熵. 物理学报, 2012, 61(16): 168701. doi: 10.7498/aps.61.168701
    [5] 潘欣裕, 赵鹤鸣. Logistic混沌系统的熵特性研究. 物理学报, 2012, 61(20): 200504. doi: 10.7498/aps.61.200504
    [6] 杨 波. 一般加速带电带磁的动态黑洞中标量场的熵. 物理学报, 2008, 57(4): 2614-2620. doi: 10.7498/aps.57.2614
    [7] 杨 波. 变加速直线运动黑洞的温度和Dirac场的熵. 物理学报, 2007, 56(11): 6772-6776. doi: 10.7498/aps.56.6772
    [8] 韩亦文, 洪 云, 杨树政. 广义不确定关系与整体单极黑洞Dirac场的熵. 物理学报, 2007, 56(1): 10-14. doi: 10.7498/aps.56.10
    [9] 郑元强. 球对称动态黑洞Dirac场的熵的再讨论. 物理学报, 2007, 56(3): 1266-1270. doi: 10.7498/aps.56.1266
    [10] 郑元强. 动态广义球对称含荷黑洞Dirac场的熵. 物理学报, 2006, 55(7): 3272-3276. doi: 10.7498/aps.55.3272
    [11] 牛振风, 刘文彪. 新Tortoise坐标变换与任意加速带电动态黑洞熵. 物理学报, 2005, 54(1): 475-480. doi: 10.7498/aps.54.475
    [12] 孙学锋, 景 玲, 刘文彪. 黑洞熵无截断薄层模型的改进与推广. 物理学报, 2004, 53(11): 4002-4006. doi: 10.7498/aps.53.4002
    [13] 强丽娥, 高新芹, 赵 峥. 动态黑洞温度和熵的再讨论. 物理学报, 2004, 53(10): 3619-3626. doi: 10.7498/aps.53.3619
    [14] 韩亦文, 洪 云. Schwarzschild-de-Sitter黑洞宇宙视界量子态的熵. 物理学报, 2004, 53(10): 3270-3273. doi: 10.7498/aps.53.3270
    [15] 王波波. 环面黑洞背景下量子场的熵. 物理学报, 2004, 53(7): 2401-2406. doi: 10.7498/aps.53.2401
    [16] 孙鸣超. 起源于引力场的Vaidya-Bonner-de Sitter黑洞的量子熵. 物理学报, 2003, 52(6): 1350-1353. doi: 10.7498/aps.52.1350
    [17] 宋太平, 侯晨霞, 黄金书. 一般球对称带电蒸发黑洞的熵. 物理学报, 2002, 51(8): 1901-1906. doi: 10.7498/aps.51.1901
    [18] 张靖仪, 赵峥. 直线加速动态黑洞Dirac场的熵. 物理学报, 2002, 51(10): 2399-2406. doi: 10.7498/aps.51.2399
    [19] 宋太平, 侯晨霞, 史旺林. Vaidya-Bonner黑洞的熵. 物理学报, 2002, 51(6): 1398-1402. doi: 10.7498/aps.51.1398
    [20] 魏志勇, 段利敏, 吴和宇, 靳根明, 李祖玉, 诸永泰, 郗洪飞, 沈文庆, 肖志刚, 王宏伟, 张保国, 柳永英, 王素芳, 胡荣江. 35MeV/u40Ar+197Au中的熵产生. 物理学报, 2001, 50(4): 649-654. doi: 10.7498/aps.50.649
计量
  • 文章访问数:  5486
  • PDF下载量:  312
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-10
  • 修回日期:  2021-11-01
  • 刊出日期:  2021-12-05

/

返回文章
返回