搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Y型微通道内气泡非对称破裂行为的数值研究

潘文韬 文琳 李姗姗 潘振海

引用本文:
Citation:

Y型微通道内气泡非对称破裂行为的数值研究

潘文韬, 文琳, 李姗姗, 潘振海

Numerical study of asymmetric breakup behavior of bubbles in Y-shaped branching microchannels

Pan Wen-Tao, Wen Lin, Li Shan-Shan, Pan Zhen-Hai
PDF
HTML
导出引用
  • 基于微通道两相流的微流控技术已得到广泛的应用, 精确控制通道中气泡或液滴的尺寸对相关微流控系统的设计起到至关重要的作用. 本文基于流体体积法重构Y型微通道内的气泡破裂行为, 系统研究了气泡无量纲尺寸(1.2—2.7)、出口流量比(1—4)以及主通道雷诺数(100—600)对气泡破裂行为的影响. 发现气泡非对称破裂过程分为3个阶段: 延伸阶段、挤压阶段和快速破裂阶段. 在气泡初始尺寸较小或出口流量较大的情况下, 气泡不破裂, 只经历延伸阶段和挤压阶段. 进一步针对不同尺寸和出口流量比揭示了气泡的4种破裂模式: 隧道-隧道破裂、阻塞-阻塞破裂、隧道-阻塞破裂和不破裂. 随着出口流量比的增大, 气泡的破裂过程逐渐变为非对称破裂, 其破裂模式沿隧道-隧道破裂/阻塞-阻塞破裂、逐渐向隧道-阻塞破裂和不破裂方向转变. 在此基础上获得了不同雷诺数和初始气泡尺寸下, 气泡破裂的临界流量比以及气泡破裂后子气泡体积比随出口流量比的变化规律并提炼了相应的准则关联式, 可为精确调控破裂后子气泡的尺寸提供理论指导.
    Microfluidic technology based on microchannel two-phase flow has been widely used. The precise control of the bubble or droplet size in the channel plays a crucial role in designing the microfluidic systems. In this work, the bubble breakup behavior in Y-shaped microchannel is reconstructed based on the volume of fluid method (VOF), and the effects of bubble dimensionless size (1.2–2.7), outlet flow ratio (1–4) and main channel Reynolds number (100–600) on the bubble breakup behavior are systematically investigated. The bubble asymmetric breakup process is found to be divided into three stages: extension stage, squeeze stage, and rapid pinch-off stage. In the case of small initial bubble size or relatively high outlet flow rate, the bubble does not break, but only experiences the extension stage and the squeezing stage. Four flow patterns of bubble breakup are further revealed for the bubbles with different sizes and outlet flow ratios: tunnel-tunnel breakup, obstruction-obstruction breakup, tunnel-obstruction breakup, and non-breakup. With the increase of outlet flow ratio, the breakup process of the bubble gradually becomes asymmetrical, and the flow pattern shifts along the tunnel-tunnel breakup and the obstruction-obstruction breakup, gradually turns toward the tunnel-obstruction breakup and non-breakup. On this basis, the critical flow ratio of bubble breakup and the variation of daughter bubble volume ratio with outlet flow ratio are obtained for different Reynolds numbers and initial bubble sizes, and the corresponding criterion correlation equation is refined, which can provide theoretical guidance for accurately regulating the daughter bubble size after breakup.
      通信作者: 李姗姗, liss@sit.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 51706136)和上海市高校特聘教授(东方学着)岗位计划资助的课题.
      Corresponding author: Li Shan-Shan, liss@sit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51706136) and the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, China.
    [1]

    涂善东, 周帼彦, 于新海 2007 化工进展 26 2

    Tu S T, Zhou G Y, Yu X H 2007 Chem. Ind. Eng. Prog. 26 2

    [2]

    Teh S Y, Lin R, Hung L H, Lee A P 2008 Lab on Chip 8 198Google Scholar

    [3]

    王琳琳, 李国君, 田辉, 叶阳辉 2011 西安交通大学学报 45 9

    Wang L L, Li G J, Tian H, Ye Y H 2011 J. Xi'an Jiaotong. Univ. 45 9

    [4]

    王长亮, 靳遵龙, 王永庆, 王定标 2017 化工进展 36 S1

    Wang C L, Jin Z L, Wang Y Q, Wang D B 2017 Chem. Ind. Eng. Prog 36 S1

    [5]

    乐军, 陈光文, 袁权, 罗灵爱, Hervé L G 2006 化工学报 57 6Google Scholar

    Le J, Chen G W, Yuan Q 2006 J. Chem. Ind. Eng. (China) 57 6Google Scholar

    [6]

    梁宏, 柴振华, 施保昌 2016 物理学报 65 204701Google Scholar

    Liang H, Cai Z H, Shi B C 2016 Acta Phys. Sin. 65 204701Google Scholar

    [7]

    Wang H 2019 Langmuir 35 32

    [8]

    Zhang J Z, Li W 2016 Int. Commun. Heat Mass Transf. 74 1Google Scholar

    [9]

    Talimi V, Muzychka Y S, Kocabiyik S 2012 Int. J. Multiphase Flow 39 88104

    [10]

    Seemann R, Brinkmann M, Pfohl T, Herminghaus S 2012 Rep. Prog. Phys. 75 016601Google Scholar

    [11]

    Squires T M, Quake S R 2005 Rev. Mod. Phys. 77 977Google Scholar

    [12]

    Stone H A, Kim S 2001 AIChE J. 47 1250Google Scholar

    [13]

    侯璟鑫, 钱刚, 周兴贵 2013 化工学报 64 6

    Hou J X, Qian G, Zhou X G 2013 J. Chem. Ind. Eng. (China) 64 6

    [14]

    Tan J, Du L, Xu J H, Wang K, Luo G S 2011 AIChE J. 57 2647Google Scholar

    [15]

    刘赵淼, 刘丽昆, 申峰 2014 机械工程学报 50 8

    Liu Z M, Liu L K, Shen F 2014 Chin. J. Mech. Eng. 50 8

    [16]

    王维萌, 马一萍, 王澎, 陈斌 2015 工程热物理学报 36 2

    Wang W M, Ma Y P, Wang P, Chen B 2015 J. Eng. Therm. 36 2

    [17]

    Ma D F, Liang D, Zhu C Y, Fu T T, Ma Y G 2020 Chem. Eng. Sci. 10 1016

    [18]

    Carlson A, Do-Quang M, Amberg G 2010 Int. J. Multiphase Flow 36 397Google Scholar

    [19]

    Samie M, Salari A, Shafii M B 2013 Phys. Rev. E 87 053003Google Scholar

    [20]

    Zheng M M, Ma Y L, Jin T M, Wang J T 2016 Microfluid Nanofluid 20 107Google Scholar

    [21]

    温宇, 朱春英, 付涛涛, 马友光 2016 高校化学工程学报 30 19Google Scholar

    Wen Y, Zhu C Y, Fu T T, Ma Y G 2016 J. Chem. Eng. Chin. Univ. 30 19Google Scholar

    [22]

    Calderon A J, Heo Y S, Huh D, Futai N, Takayama S, Fowlkes J B 2006 Appl. Phys. Lett. 89 299

    [23]

    丛振霞, 朱春英, 付涛涛, 马友光 2014 化工学报 65 93Google Scholar

    Cong Z X, Zhu C Y, Fu T T, Ma Y G 2014 J. Chem. Ind. Eng. (China) 65 93Google Scholar

    [24]

    Menetrier-Deremble L, Tabeling P 2006 Phys Rev. E 74 035303

    [25]

    Lou Q, Li T, Yang M 2019 J. Appl. Phys. 126 034301Google Scholar

    [26]

    Brackbill J U, Kothe D B, Zemach C 1992 J. Comput. Phys. 100 335Google Scholar

    [27]

    Fluent, ANSYS FLUENT 17.0: User's Guide, 2016, ANSYS-Fluent Inc., Canonsburg, PA.

    [28]

    Xu Z Y, Fu T T, Zhu C Y, Jiang S K, Wang K 2019 Electrophoresis 40 376Google Scholar

    [29]

    Gupta R, Fletcher D F, Haynes B S 2009 Chem. Eng. Sci. 64 29

    [30]

    Pan Z H, Weibel J A, Garimella S V 2015 Numerical Heat Transfer, Part A 67 1

    [31]

    Wang X, Liu Z M, Pang Y 2019 Chem. Eng. Sci. 197 258Google Scholar

    [32]

    Wang X, Zhu C, Wu Y, Fu T, Ma Y 2015 Chem. Eng. Sci. 132 128Google Scholar

    [33]

    Jullien M C, Tsang Mui Ching M J, Cohen C, Menetrier L, Tabeling P 2009 Phys. Fluids 21 072001Google Scholar

    [34]

    Leshansky A M, Pismen L M 2009 Phys. Fluids 21 023303Google Scholar

  • 图 1  (a) 孤立气泡通过Y型分支微通道的示意图; (b) Y型结区域的网格模型

    Fig. 1.  (a) Schematic illustration of an isolated bubble traveling through a Y-shaped branching microchannel; (b) mesh generation in Y-junction region.

    图 2  气液两相流模型的验证: 数值结果与实验结果的比较[28]

    Fig. 2.  Validation of hydrodynamic model: Comparison between numerical results (by present model) and experimental results[28]

    图 3  网格无关性检验: $t^* $ = 27.8时的气泡轮廓

    Fig. 3.  Mesh independence study: Bubble profile at the dimensionless time instant of 27.8.

    图 4  Y型分支微通道中气泡轮廓的演化 (a) Re = 100, λ = 1; (b) Re = 300, λ = 1; (c) Re = 300, λ = 2; (d) Re = 300, λ = 4

    Fig. 4.  Evolution of bubble profile in Y-junction region: (a) Re = 100, λ = 1; (b) Re = 300, λ = 1; (c) Re = 300, λ = 2; (d) Re = 300, λ = 4.

    图 5  气泡的4种破裂模式 (a) 隧道-隧道破裂; (b) 阻塞-阻塞破裂; (c) 隧道-阻塞破裂; (d) 不破裂

    Fig. 5.  Different flow patterns of bubble breakup: (a) Tunnel-tunnel breakup; (b) obstruction-obstruction breakup; (c) tunnel-obstruction breakup; (d) non-breakup.

    图 6  液相的挤压力和剪切力分布 (a) 隧道-隧道破裂; (b) 阻塞-阻塞破裂; (c) 隧道-阻塞破裂

    Fig. 6.  Liquid-phase squeezing pressure and shear force distribution during bubble motion: (a) Tunnel-tunnel breakup; (b) obstruction-obstruction breakup; (c) tunnel-obstruction breakup.

    图 7  不同流量比下气泡的破裂模式相图 (a) λ = 1.0; (b) λ = 1.5; (c) λ = 2.0; (d) λ = 2.5

    Fig. 7.  Bubble breakup modes at different flow ratios: (a) λ = 1.0; (b) λ = 1.5; (c) λ = 2.0; (d) λ = 2.5.

    图 8  不同流量比(λ)下分支通道中子气泡的体积比(Rv) (a) $V^* $= 2.7; (b) $V^* $= 2.2; (c) $V^* $= 1.7

    Fig. 8.  Volume ratio (Rv) of daughter bubbles in branching channel with different outlet flow ratio (λ): (a) $V^* $= 2.7; (b) $V^* $= 2.2; (c) $V^* $= 1.7.

    图 9  不同气泡尺寸下的临界破裂流量比(λc)

    Fig. 9.  Critical fracture flow ratio (λc) at different bubble volume.

    表 1  水和空气的物理性质(20 ℃)

    Table 1.  Physical parameters of water and air (20 ℃)

    流体类型密度/(kg·m–3)黏性系
    数/(Pa·s)
    表面张力
    系数/(N·m–1)
    空气1.2250.000018
    998.20.001005 0.07275
    下载: 导出CSV

    表 2  网格无关性验证: 气泡长度对比

    Table 2.  Mesh-independent study: Comparison of bubble length.

    算例网格 1网格 2网格 3网格 4
    网格数499890100317015865302401453
    雷诺数100600100600100600100600
    气泡长度$l^* $2.1222.5632.1962.5952.1872.5892.1902.592
    |误差($l^* $)|/%3.111.120.270.120.140.12
    下载: 导出CSV

    表 3  经验公式(11)的拟合参数值

    Table 3.  Fitting parameter values of empirical formula (11).

    Re
    100200300400500600
    a11.471.451.351.301.251.22
    b15.0 ×
    10–7
    1.1 ×
    10–7
    1.0 ×
    10–4
    5.8 ×
    10–3
    4.6 ×
    10–3
    2.2 ×
    10–4
    c10.420.571.152.082.252.65
    a20.0010.0010.0010.020.020.02
    b29.9 ×
    10–5
    1.201.581.070.660.81
    c20.500.981.232.052.242.50
    a30.0010.0010.0010.0050.010
    b30.47–0.360.150.03–0.13
    c30.851.001.201.631.98
    下载: 导出CSV

    表 4  经验公式(12)的拟合参数值

    Table 4.  Fitting parameter values of empirical formula (12).

    ij
    $V^* $= 1.7–0.790.025
    $V^* $= 2.2–0.440.034
    $V^* $= 2.7–1.540.054
    下载: 导出CSV
  • [1]

    涂善东, 周帼彦, 于新海 2007 化工进展 26 2

    Tu S T, Zhou G Y, Yu X H 2007 Chem. Ind. Eng. Prog. 26 2

    [2]

    Teh S Y, Lin R, Hung L H, Lee A P 2008 Lab on Chip 8 198Google Scholar

    [3]

    王琳琳, 李国君, 田辉, 叶阳辉 2011 西安交通大学学报 45 9

    Wang L L, Li G J, Tian H, Ye Y H 2011 J. Xi'an Jiaotong. Univ. 45 9

    [4]

    王长亮, 靳遵龙, 王永庆, 王定标 2017 化工进展 36 S1

    Wang C L, Jin Z L, Wang Y Q, Wang D B 2017 Chem. Ind. Eng. Prog 36 S1

    [5]

    乐军, 陈光文, 袁权, 罗灵爱, Hervé L G 2006 化工学报 57 6Google Scholar

    Le J, Chen G W, Yuan Q 2006 J. Chem. Ind. Eng. (China) 57 6Google Scholar

    [6]

    梁宏, 柴振华, 施保昌 2016 物理学报 65 204701Google Scholar

    Liang H, Cai Z H, Shi B C 2016 Acta Phys. Sin. 65 204701Google Scholar

    [7]

    Wang H 2019 Langmuir 35 32

    [8]

    Zhang J Z, Li W 2016 Int. Commun. Heat Mass Transf. 74 1Google Scholar

    [9]

    Talimi V, Muzychka Y S, Kocabiyik S 2012 Int. J. Multiphase Flow 39 88104

    [10]

    Seemann R, Brinkmann M, Pfohl T, Herminghaus S 2012 Rep. Prog. Phys. 75 016601Google Scholar

    [11]

    Squires T M, Quake S R 2005 Rev. Mod. Phys. 77 977Google Scholar

    [12]

    Stone H A, Kim S 2001 AIChE J. 47 1250Google Scholar

    [13]

    侯璟鑫, 钱刚, 周兴贵 2013 化工学报 64 6

    Hou J X, Qian G, Zhou X G 2013 J. Chem. Ind. Eng. (China) 64 6

    [14]

    Tan J, Du L, Xu J H, Wang K, Luo G S 2011 AIChE J. 57 2647Google Scholar

    [15]

    刘赵淼, 刘丽昆, 申峰 2014 机械工程学报 50 8

    Liu Z M, Liu L K, Shen F 2014 Chin. J. Mech. Eng. 50 8

    [16]

    王维萌, 马一萍, 王澎, 陈斌 2015 工程热物理学报 36 2

    Wang W M, Ma Y P, Wang P, Chen B 2015 J. Eng. Therm. 36 2

    [17]

    Ma D F, Liang D, Zhu C Y, Fu T T, Ma Y G 2020 Chem. Eng. Sci. 10 1016

    [18]

    Carlson A, Do-Quang M, Amberg G 2010 Int. J. Multiphase Flow 36 397Google Scholar

    [19]

    Samie M, Salari A, Shafii M B 2013 Phys. Rev. E 87 053003Google Scholar

    [20]

    Zheng M M, Ma Y L, Jin T M, Wang J T 2016 Microfluid Nanofluid 20 107Google Scholar

    [21]

    温宇, 朱春英, 付涛涛, 马友光 2016 高校化学工程学报 30 19Google Scholar

    Wen Y, Zhu C Y, Fu T T, Ma Y G 2016 J. Chem. Eng. Chin. Univ. 30 19Google Scholar

    [22]

    Calderon A J, Heo Y S, Huh D, Futai N, Takayama S, Fowlkes J B 2006 Appl. Phys. Lett. 89 299

    [23]

    丛振霞, 朱春英, 付涛涛, 马友光 2014 化工学报 65 93Google Scholar

    Cong Z X, Zhu C Y, Fu T T, Ma Y G 2014 J. Chem. Ind. Eng. (China) 65 93Google Scholar

    [24]

    Menetrier-Deremble L, Tabeling P 2006 Phys Rev. E 74 035303

    [25]

    Lou Q, Li T, Yang M 2019 J. Appl. Phys. 126 034301Google Scholar

    [26]

    Brackbill J U, Kothe D B, Zemach C 1992 J. Comput. Phys. 100 335Google Scholar

    [27]

    Fluent, ANSYS FLUENT 17.0: User's Guide, 2016, ANSYS-Fluent Inc., Canonsburg, PA.

    [28]

    Xu Z Y, Fu T T, Zhu C Y, Jiang S K, Wang K 2019 Electrophoresis 40 376Google Scholar

    [29]

    Gupta R, Fletcher D F, Haynes B S 2009 Chem. Eng. Sci. 64 29

    [30]

    Pan Z H, Weibel J A, Garimella S V 2015 Numerical Heat Transfer, Part A 67 1

    [31]

    Wang X, Liu Z M, Pang Y 2019 Chem. Eng. Sci. 197 258Google Scholar

    [32]

    Wang X, Zhu C, Wu Y, Fu T, Ma Y 2015 Chem. Eng. Sci. 132 128Google Scholar

    [33]

    Jullien M C, Tsang Mui Ching M J, Cohen C, Menetrier L, Tabeling P 2009 Phys. Fluids 21 072001Google Scholar

    [34]

    Leshansky A M, Pismen L M 2009 Phys. Fluids 21 023303Google Scholar

  • [1] 张沐安, 王进卿, 吴睿, 冯致, 詹明秀, 徐旭, 池作和. 多孔介质内气泡Ostwald熟化特性三维孔网数值模拟. 物理学报, 2023, 72(16): 164701. doi: 10.7498/aps.72.20230695
    [2] 张晋新, 王信, 郭红霞, 冯娟, 吕玲, 李培, 闫允一, 吴宪祥, 王辉. 三维数值仿真研究锗硅异质结双极晶体管总剂量效应. 物理学报, 2022, 71(5): 058502. doi: 10.7498/aps.71.20211795
    [3] 贺传晖, 刘高洁, 娄钦. 大密度比气泡在含非对称障碍物微通道内的运动行为. 物理学报, 2021, 70(24): 244701. doi: 10.7498/aps.70.20211328
    [4] 张晋新, 王信, 郭红霞, 冯娟. 基于三维数值仿真的SiGe HBT总剂量效应关键影响因素机理研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211795
    [5] 朱海龙, 李雪迎, 童洪辉. 三维数值模拟射频热等离子体的物理场分布. 物理学报, 2021, 70(15): 155202. doi: 10.7498/aps.70.20202135
    [6] 潘文韬, 李姗姗, 文琳, 潘振海. Y型微通道内气泡非对称破裂行为的数值研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210832
    [7] 俞炜, 邓梓龙, 吴苏晨, 于程, 王超. Y型微通道内双重乳液流动破裂机理. 物理学报, 2019, 68(5): 054701. doi: 10.7498/aps.68.20181877
    [8] 娄钦, 李涛, 杨茉. 复杂微通道内气泡在浮力作用下上升行为的格子Boltzmann方法模拟. 物理学报, 2018, 67(23): 234701. doi: 10.7498/aps.67.20181311
    [9] 周剑宏, 童宝宏, 王伟, 苏家磊. 油滴撞击油膜层内气泡的变形与破裂过程的数值模拟. 物理学报, 2018, 67(11): 114701. doi: 10.7498/aps.67.20180133
    [10] 郑晖, 张崇宏, 孙博, 杨义涛, 白彬, 宋银, 赖新春. 小体积比两相分离早期过程的三维格子气模型研究. 物理学报, 2013, 62(15): 156401. doi: 10.7498/aps.62.156401
    [11] 李帅, 张阿漫, 王诗平. 气泡引起的皇冠型水冢实验与数值研究. 物理学报, 2013, 62(19): 194703. doi: 10.7498/aps.62.194703
    [12] 张明焜, 陈硕, 尚智. 带凹槽的微通道中液滴运动数值模拟. 物理学报, 2012, 61(3): 034701. doi: 10.7498/aps.61.034701
    [13] 刘腊群, 刘大刚, 王学琼, 邹文康, 杨超. 带螺旋支撑杆的同轴磁绝缘传输线三维数值模拟的实现. 物理学报, 2012, 61(16): 162901. doi: 10.7498/aps.61.162901
    [14] 彭凯, 刘大刚, 廖臣, 刘盛纲. 三维电子回旋脉塞的数值模拟研究. 物理学报, 2011, 60(9): 091301. doi: 10.7498/aps.60.091301
    [15] 张新明, 周超英, Islam Shams, 刘家琦. 用格子Boltzmann方法数值模拟三维空化现象. 物理学报, 2009, 58(12): 8406-8414. doi: 10.7498/aps.58.8406
    [16] 潘诗琰, 朱鸣芳. 三维溶质枝晶生长数值模拟. 物理学报, 2009, 58(13): 278-S284. doi: 10.7498/aps.58.278
    [17] 张科营, 郭红霞, 罗尹虹, 何宝平, 姚志斌, 张凤祁, 王园明. 静态随机存储器单粒子翻转效应三维数值模拟. 物理学报, 2009, 58(12): 8651-8656. doi: 10.7498/aps.58.8651
    [18] 朱昌盛, 冯力, 王智平, 肖荣振. 三维枝晶生长的相场法数值模拟研究. 物理学报, 2009, 58(11): 8055-8061. doi: 10.7498/aps.58.8055
    [19] 卢玉华, 詹杰民. 三维方腔温盐双扩散的格子Boltzmann方法数值模拟. 物理学报, 2006, 55(9): 4774-4782. doi: 10.7498/aps.55.4774
    [20] 卢新培, 潘垣, 张寒虹. 水中脉冲放电等离子体通道特性及气泡破裂过程. 物理学报, 2002, 51(8): 1768-1772. doi: 10.7498/aps.51.1768
计量
  • 文章访问数:  4785
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-02
  • 修回日期:  2021-10-20
  • 上网日期:  2022-01-01
  • 刊出日期:  2022-01-20

/

返回文章
返回