搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

(SrVO3)5/(SrTiO3)1(111)异质结金属-绝缘体转变和磁性调控的第一性原理研究

房晓南 杜颜伶 吴晨雨 刘静

引用本文:
Citation:

(SrVO3)5/(SrTiO3)1(111)异质结金属-绝缘体转变和磁性调控的第一性原理研究

房晓南, 杜颜伶, 吴晨雨, 刘静

First principle study of tuning metal-insulator transition and magnetic properties of (SrVO3)5/(SrTiO3)1 (111) heterostructures

Fang Xiao-Nan, Du Yan-Ling, Wu Chen-Yu, Liu Jing
PDF
HTML
导出引用
  • (111)取向的钙钛矿异质结具有独特的六角蜂窝状双层结构, 展现出丰富独特的物理现象, 因而近年来得到越来越多的关注. 本文利用第一性原理计算研究了(111)取向的(SrVO3)5/(SrTiO3)1异质结, 计算结果表明该体系为半金属铁磁体. 进一步的研究表明该体系的电、磁性质可以通过施加面内应变和界面元素掺杂进行调控: 在4%的面内压缩应变到2%的面内拉伸应变范围内, 该体系保持铁磁半金属性质, V 3d电子是体系半金属性的主要来源; 当面内压缩应变增加到8%或面内拉伸应变增加到4%时, 该体系的基态变为反铁磁绝缘体; 通过异质结界面处Ti-V阳离子的混合掺杂, 该体系可以实现从铁磁半金属向铁磁绝缘体的转变. 本文的研究结果表明, 该体系在自旋电子学领域具有很高的应用潜力, 本文研究为利用(SrVO3)5/(SrTiO3)1(111)异质结探索量子相变提供了理论参考.
    Perovskite heterostructure has a honeycomb lattice when a bilayer along the [111] direction is considered. The material usually presents a wealth of unique properties. Recently, (111)-oriented perovskite heterojunctions have received more and more attention. In this work, the first-principle calculations are employed to investigate the electronic and magnetic properties of (SrVO3)5/(SrTiO3)1 (111) heterostructure. The calculations show that the ground state of (SrVO3)5/(SrTiO3)1 (111) heterostructure is a half-metallic ferromagnet. Further study reveals the existence of different correlated-electron ground states in (SrVO3)5/(SrTiO3)1 (111) heterostructure, and they can be tuned by changing in-plane strain and interfacial cation intermixing. This system can keep half-metallic properties under difffferent in-plane strains from –4% to 2%. The half-metallic properties mainly come from V 3d electrons. The ground state of the system can evolve from a half-metal to a antiferromagnetic insulator if the in-plane compressive (tensile) strain is added up to 8% (4%). The interfacial Ti-V intermixing can destroy the original half-metallic properties, and the system exhibits a ferromagnetic insulator phase. These results demonstrate that the system has potential applications in the field of spintronics, and provide a theoretical reference for the use of (SrVO3)5/(SrTiO3)1 (111) heterostructures to explore quantum phase transitions.
      通信作者: 杜颜伶, duyanling@sdutcm.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 82174528)、山东管理学院博士科研启动基金(批准号: SDMUD201901)和山东管理学院科研启航计划(批准号: QH2020Z05)资助的课题.
      Corresponding author: Du Yan-Ling, duyanling@sdutcm.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 82174528), the Start-up Fund for Doctoral Research of Shandong Management University, China (Grant No. SDMUD201901), and the Scientific Research Start-up Project of Shandong Management University, China (Grant No. QH2020Z05).
    [1]

    Ohtomo A, Hwang H Y 2004 Nature 427 423Google Scholar

    [2]

    Zhang X J, Chen P, Liu B G 2017 J. Mater. Chem. C 5 9898Google Scholar

    [3]

    Davis S, Huang Z, Han K, Ariando, Venkatesan T, Chandrasekhar V 2018 Phys. Rev. B 98 024504

    [4]

    Kim D H, Kim D W, Kang B S, Noh T W, Lee D R, Lee K B, Lee S J 2000 Solid State Commun. 114 473Google Scholar

    [5]

    Dai Q, Lüders U, Frésard R, Eckern U, Schwingenschlögl U 2018 Adv. Mater. Interfaces 5 1701169Google Scholar

    [6]

    Pardo V, Pickett W E 2010 Phys. Rev. B 81 245117Google Scholar

    [7]

    James A D N, Aichhorn M, Laverock J 2021 Phys. Rev. Res. 3 023149Google Scholar

    [8]

    Yang Z, Ko C, Ramanathan S 2011 Annu. Rev. Mater. Res. 41 337Google Scholar

    [9]

    Xu R, Ji Y, Bouchilaoun R, Qian F, Li M, Zhang X, Tang R, Zhao R, Misra S, Wang H, Li W, Kan C, Shi D, Fan J, Yang H 2019 Ceram. Int. 45 11304Google Scholar

    [10]

    Roth J, Kuznetsova T, Miao L X, Pogrebnyakov1 A, Alem1 N, Engel-Herbert R 2021 APL Mater. 9 021114Google Scholar

    [11]

    Mitsuhashi T, Minohara M, Yukawa R, Kitamura M, Horiba K, Kobayashi M, Kumigashira H 2016 Phys. Rev. B 94 125148Google Scholar

    [12]

    Jacobs R, Booske J, Morgan D 2016 Adv. Funct. Mater. 26 5471Google Scholar

    [13]

    袁烺, 肖嘉慧, 谢颖 2017 中国科技论文 12 2826Google Scholar

    Yuan L, Xiao J H, Xie Y 2017 Chin. Sci. Paper 12 2826Google Scholar

    [14]

    Shen M L, Weng Y K, Yi Y W, Geng Q F, Yan W, Wang H Y, Yang J P, Li X 2019 J. Appl. Phys. 126 085307Google Scholar

    [15]

    Weng Y K, Zhang J J, Gao B, Dong S 2017 Phys. Rev. B 95 155117Google Scholar

    [16]

    Xiao D, Zhu W, Ran Y, Nagaosa N, Okamoto S 2011 Nat. Commun. 2 1Google Scholar

    [17]

    Okamoto S, Zhu W, Nomura Y, Arita R, Xiao D, Nagaosa N 2014 Phys. Rev. B 89 195121Google Scholar

    [18]

    Chen R, Lee S B, Balents L 2013 Phys. Rev. B 87 161119

    [19]

    Doennig D, Pickett W E, Pentcheva R 2014 Phys. Rev. B 89 121110

    [20]

    Du Y L, Wang C L, Li J C, Zhang X Z, Wang F N, Zhu Y H, Yin N, Mei L M 2015 Comput. Mater. Sci. 99 57Google Scholar

    [21]

    李永宁, 谢逸群, 王音 2021 物理学报 70 227701Google Scholar

    Li Y N, Xie Y Q, Wang Y 2021 Acta Phys. Sin. 70 227701Google Scholar

    [22]

    胡海洋, 陈吉堃, 邵飞, 吴勇, 孟康康, 李志鹏, 苗君, 徐晓光, 王嘉鸥, 姜勇 2019 物理学报 68 026701Google Scholar

    Hu H Y, Chen J K, Shao F, Wu Y, Meng K K, Li Z P, Miao J, Xu X G, Wang J O, Jiang Y 2019 Acta Phys. Sin. 68 026701Google Scholar

    [23]

    Kalabukhov A S, Boikov Y A, Serenkov I T, Sakharov V I, Popok V N, Gunnarsson R, Borjesson J, Ljustina N, Olsson E, Winkler D, Claeson T 2009 Phys. Rev. Lett. 103 146101Google Scholar

    [24]

    Qiao L, LDroubay T C, Shutthanandan V, Zhu Z, Sushko P V, Chambers S A 2010 J. Phys. Condens. Matter 22 312201Google Scholar

    [25]

    Li J, Yin D, Li Q, Sun R 2017 Phys. Chem. Chem. Phys. 19 6945Google Scholar

    [26]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [27]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [28]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [29]

    Anisimov V I, Zaanen J, Andersen O K 1991 Phys. Rev. B 44 943Google Scholar

    [30]

    Du Y L, Wang C L, Li J C, Xu P P, Zhang X H, Liu J, Su W B, Mei L M 2014 Chin. Phys. B 23 087302Google Scholar

    [31]

    Park S Y, Kumar A, Rabe K M 2017 Phys. Rev. Lett. 118 087602Google Scholar

    [32]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [33]

    Shein I R, Kozhevnikov V L, Ivanovskii A L 2008 Solid State Sci. 10 217Google Scholar

    [34]

    Chandra H K, Guo G Y 2017 Phys. Rev. B 95 134448

    [35]

    Shein I R, Ivanovskii A L 2007 Phys. Lett. A 371 155Google Scholar

    [36]

    Musa Saad H E M 2021 Bull. Mater. Sci. 44 1Google Scholar

    [37]

    Beltrán J I, Muñoz M C 2017 Phys. Rev. B 95 245120Google Scholar

    [38]

    Du Y L, Bu H X, Ji C J, Zhang X M, Li C L, Fang X N 2019 Phys. Chem. Chem. Phys. 21 18170Google Scholar

    [39]

    De Luca G M, Di Capua R, Di Gennaro E, Sambri A, Miletto Granozio F, Ghiringhelli G, Betto D, Piamonteze C, Brookes N B, Salluzzo M 2018 Phys. Rev. B 98 115143Google Scholar

    [40]

    Ye H S, Zhu Y J, Bai D M, Zhang J T, Wu X S, Wang J L 2021 Phys. Rev. B 103 035423Google Scholar

    [41]

    Yoshida T, Kobayashi M, Yoshimatsu K, Kumigashira H, Fujimori A 2016 J. Electron. Spectrosc. 208 11Google Scholar

    [42]

    Ma H J H, Zhou J, Yang M, Liu Y, Zeng S W, Zhou W X, Zhang L C, Venkatesan T, FengY P, Ariando A 2017 Phys. Rev. B 95 155314Google Scholar

    [43]

    Liu Z T Y, Podraza N J, Khare S V, Sarin P 2018 Comput. Mater. Sci. 144 139Google Scholar

    [44]

    Oshima M 2014 Appl. Sci. Converg. Technol. 23 317Google Scholar

    [45]

    Wang J, Gauquelin N, Huijben M, Verbeeck J, Rijnders G, Koster G 2020 Appl. Phys. Lett. 117 133105Google Scholar

  • 图 1  (a), (b) (SVO)5/(STO)1 (111)异质结的(a)俯视图和(b)侧视图; (c) 沿c轴方向, 相邻原子层之间的距离; (d) SrO3原子层中锶离子相对于氧离子在c轴方向的位移, ΔZ = Z(Sri) – Z(Oi), 其中Z(Sri)是第i层SrO3中锶离子的纵坐标值, Z(Oi)是第i层SrO3中氧离子的纵坐标平均值

    Fig. 1.  (a) Top view of the (SVO)5/(STO)1(111) heterostructure with in-plane 1 × 1 unit cells; (b) side view of (SVO)5/(STO)1(111) heterostructure; (c) the interplanar distance between consecutive planes; (d) the displacement of Sr cation relative to O ions in each SrO3 layers, ΔZ = Z(Sri) – Z(Oi), where Z(Sri) is the value of the Sr cation and Z(Oi) is the average value of the O atoms in a given SrO3 layer i along the c axis.

    图 2  (a) (SVO)5/(STO)1(111)异质结费米面附近的能带结构, 高对称点如图中第一布里渊区所示; (b) 费米面附近的总态密度图, 费米能位于0 eV处(用黑色虚线表示); (c) (SVO)5/(STO)1(111)各原子层在费米面附近的态密度图, 图中自旋向上的电子态密度由浅灰色区域表示, 自旋向下的电子态密度由深灰色区域表示, 黑色虚线表示费米能级; (d) 费米面附近([EF –1.5 eV, EF])的电荷密度图, 图中三维电荷密度的isosurface值取0.015 e/bohr3

    Fig. 2.  (a) Band structures of (SVO)5/(STO)1(111) along with the special points in the Brillouin zone. The inset shows the Brillouin zone and the special points. (b) Total density of states (TDOS) near the Fermi level. The Fermi level is located at 0 eV (dotted black line). (c) Layer-resolved partial density of states (PDOS) of (SVO)5/(STO)1(111). (d) Projections of the carrier density (yellow contour) of (SVO)5/(STO)1(111) heterostructure. The isosurface values are chosen as 0.015 e/bohr3. The carrier densities are calculated from contributions within an energy window of [EF –1.5 eV, EF].

    图 3  (a) V, Ti, Sr, O原子的态密度图; (b) V原子3 d轨道的分波态密度图, 其中, V1, V2, V3与图1(b)中标注一致; (c) O原子2p轨道的分波态密度图; (d) Ti原子3d轨道的分波态密度图

    Fig. 3.  (a) Densities of states near the Fermi level of V, Ti, Sr and O. (b) Partial densities of states (PDOS) of V 3d orbitals. V1, V2, V3 are the same as those in Fig. 1(b). (c) PDOS of the O 2p orbitals. (d) PDOS of the Ti 3d orbitals.

    图 4  (a) 面内压缩应变为8%和面内拉伸应变为4%时能量最低的反铁磁序. 红色小球代表自旋向上的V原子, 绿色小球代表自旋向下的V原子, 蓝色小球代表Ti原子. (b) 在不同的面内应变条件下, 沿c轴方向各原子层之间的距离

    Fig. 4.  (a) The most stable AFM structure of (SVO)5/(STO)1(111) under the in-plane compressive (tensile) strain of 8% (4%). The red and green balls represent the spin-up and spin-down V atoms, respectively. Blue balls represent Ti atoms. (b) The interplanar distance along the c axis between consecutive planes under different in-plane strains.

    图 5  (SVO)5/(STO)1(111)异质结在不同面内应变下费米面附近的能带结构和总态密度图 (a) η = –8%; (b) η = –7%; (c) η = –4%; (d) η = –2%; (e) η = 2%; (f) η = 4%. 高对称点如图2(a)中第一布里渊区所示, 对应面内应变下的总态密度图显示在能带图的下面. 黑色实线和红色实线分别代表自旋向上和自旋向下, 费米能级用虚线表示

    Fig. 5.  Band structures and total density of states near the Fermi level of (SVO)5/(STO)1(111) under different in-plane strains: (a) η = –8%; (b) η = –7%; (c) η = –4%; (d) η = –2%; (e) η = 2%; (f) η = 4%. The Brillouin zone is the same as that in Fig. 2(a). Black and red lines are spin-up and spin-down states, respectively. The Fermi level is located at 0 eV (dotted black line).

    图 6  不同面内应变下(SVO)5/(STO)1(111)异质结中各原子的态密度图 (a) η = –8%; (b) η = –7%; (c) η = –4%; (d) η = –2%; (e) η = 2%; (f) η = 4%. 不同颜色的实线代表不同原子的态密度图. 态密度图中上部为上自旋态密度, 下部为下自旋态密度, 费米能级用黑色虚线表示

    Fig. 6.  DOS near the Fermi level of the atoms in (SVO)5/(STO)1(111) under different in-plane strains: (a) η = –8%; (b) η = –7%; (c) η = –4%; (d) η = –2%; (e) η = 2%; (f) η = 4%. Different orbitals are marked by different colored lines. The Fermi level is indicated by the dashed line.

    图 7  不同面内应变下铁磁半金属(SVO)5/(STO)1(111)异质结中费米面附近([EF –1.5 eV, EF])的电荷密度图和各V原子的磁矩 (a) η = –4%; (b) η = –2%; (c) η = 0%; (d) η = 2%. 图中三维电荷密度的isosurface值取 0.015 e/bohr3

    Fig. 7.  Projections of the carrier density (yellow contour) and magnetic moments of V atoms of (SVO)5/(STO)1(111) heterostructure under different in-plane strains: (a) η = –4%; (b) η = –2%; (c) η = 0%; (d) η = 2%. The atoms are not shown. The isosurface values are chosen as 0.015 e/bohr3. The carrier densities are calculated from contributions within an energy window of [EF –1.5 eV, EF]

    图 8  不同面内应变下(SVO)5/(STO)1(111)异质结中V 3d轨道的态密度图 (a) η = –8%; (b) η = –7%; (c) η = –4%; (d) η = –2%; (e) η = 2%; (f) η = 4%. 不同颜色的实线代表不同轨道; 态密度图中上部为上自旋态密度, 下部为下自旋态密度, 费米能级用虚线表示

    Fig. 8.  Projected density of states of V 3d near the Fermi level of (SVO)5/(STO)1(111) under different in-plane strains: (a) η = –8%; (b) η = –7%; (c) η = –4%; (d) η = –2%; (e) η = 2%; (f) η = 4%. Different orbitals are marked by different colored lines. The Fermi level is indicated by the dashed line.

    图 9  (a) 界面Ti-V扩散掺杂模型Ⅰ的(SVO)5/(STO)1(111)侧视图(图中只显示Ti和V原子); (b) 模型Ⅰ费米面附近的总态密度, 费米能位于0 eV处(用黑色虚线表示); (c) 模型Ⅰ各原子的态密度图; (d) 界面Ti-V扩散掺杂模型Ⅱ的(SVO)5/(STO)1 (111)侧视图(图中只显示Ti和V原子); (e) 模型Ⅱ费米面附近的总态密度, 费米能位于0 eV处(用黑色虚线表示); (f) 模型Ⅱ各原子的态密度图, 不同颜色的实线代表不同原子的态密度图. 态密度图中上部为上自旋态密度, 下部为下自旋态密度, 费米能级用虚线表示

    Fig. 9.  (a) Side view of (SVO)5/(STO)1(111) heterostructure Ⅰ with interfacial Ti-V intermixing; (b) total density of states of heterostructure Ⅰ near the Fermi level; (c) DOS of atoms in heterostructure Ⅰ near the Fermi level; (d) side view of (SVO)5/(STO)1 (111) heterostructure Ⅱ with interfacial Ti-V intermixing; (e) total density of states of heterostructure Ⅱ near the Fermi level; (f) DOS of atoms in heterostructure Ⅱ near the Fermi level. Different orbitals are marked by different colored lines. The Fermi level is indicated by the dashed line.

  • [1]

    Ohtomo A, Hwang H Y 2004 Nature 427 423Google Scholar

    [2]

    Zhang X J, Chen P, Liu B G 2017 J. Mater. Chem. C 5 9898Google Scholar

    [3]

    Davis S, Huang Z, Han K, Ariando, Venkatesan T, Chandrasekhar V 2018 Phys. Rev. B 98 024504

    [4]

    Kim D H, Kim D W, Kang B S, Noh T W, Lee D R, Lee K B, Lee S J 2000 Solid State Commun. 114 473Google Scholar

    [5]

    Dai Q, Lüders U, Frésard R, Eckern U, Schwingenschlögl U 2018 Adv. Mater. Interfaces 5 1701169Google Scholar

    [6]

    Pardo V, Pickett W E 2010 Phys. Rev. B 81 245117Google Scholar

    [7]

    James A D N, Aichhorn M, Laverock J 2021 Phys. Rev. Res. 3 023149Google Scholar

    [8]

    Yang Z, Ko C, Ramanathan S 2011 Annu. Rev. Mater. Res. 41 337Google Scholar

    [9]

    Xu R, Ji Y, Bouchilaoun R, Qian F, Li M, Zhang X, Tang R, Zhao R, Misra S, Wang H, Li W, Kan C, Shi D, Fan J, Yang H 2019 Ceram. Int. 45 11304Google Scholar

    [10]

    Roth J, Kuznetsova T, Miao L X, Pogrebnyakov1 A, Alem1 N, Engel-Herbert R 2021 APL Mater. 9 021114Google Scholar

    [11]

    Mitsuhashi T, Minohara M, Yukawa R, Kitamura M, Horiba K, Kobayashi M, Kumigashira H 2016 Phys. Rev. B 94 125148Google Scholar

    [12]

    Jacobs R, Booske J, Morgan D 2016 Adv. Funct. Mater. 26 5471Google Scholar

    [13]

    袁烺, 肖嘉慧, 谢颖 2017 中国科技论文 12 2826Google Scholar

    Yuan L, Xiao J H, Xie Y 2017 Chin. Sci. Paper 12 2826Google Scholar

    [14]

    Shen M L, Weng Y K, Yi Y W, Geng Q F, Yan W, Wang H Y, Yang J P, Li X 2019 J. Appl. Phys. 126 085307Google Scholar

    [15]

    Weng Y K, Zhang J J, Gao B, Dong S 2017 Phys. Rev. B 95 155117Google Scholar

    [16]

    Xiao D, Zhu W, Ran Y, Nagaosa N, Okamoto S 2011 Nat. Commun. 2 1Google Scholar

    [17]

    Okamoto S, Zhu W, Nomura Y, Arita R, Xiao D, Nagaosa N 2014 Phys. Rev. B 89 195121Google Scholar

    [18]

    Chen R, Lee S B, Balents L 2013 Phys. Rev. B 87 161119

    [19]

    Doennig D, Pickett W E, Pentcheva R 2014 Phys. Rev. B 89 121110

    [20]

    Du Y L, Wang C L, Li J C, Zhang X Z, Wang F N, Zhu Y H, Yin N, Mei L M 2015 Comput. Mater. Sci. 99 57Google Scholar

    [21]

    李永宁, 谢逸群, 王音 2021 物理学报 70 227701Google Scholar

    Li Y N, Xie Y Q, Wang Y 2021 Acta Phys. Sin. 70 227701Google Scholar

    [22]

    胡海洋, 陈吉堃, 邵飞, 吴勇, 孟康康, 李志鹏, 苗君, 徐晓光, 王嘉鸥, 姜勇 2019 物理学报 68 026701Google Scholar

    Hu H Y, Chen J K, Shao F, Wu Y, Meng K K, Li Z P, Miao J, Xu X G, Wang J O, Jiang Y 2019 Acta Phys. Sin. 68 026701Google Scholar

    [23]

    Kalabukhov A S, Boikov Y A, Serenkov I T, Sakharov V I, Popok V N, Gunnarsson R, Borjesson J, Ljustina N, Olsson E, Winkler D, Claeson T 2009 Phys. Rev. Lett. 103 146101Google Scholar

    [24]

    Qiao L, LDroubay T C, Shutthanandan V, Zhu Z, Sushko P V, Chambers S A 2010 J. Phys. Condens. Matter 22 312201Google Scholar

    [25]

    Li J, Yin D, Li Q, Sun R 2017 Phys. Chem. Chem. Phys. 19 6945Google Scholar

    [26]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [27]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [28]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [29]

    Anisimov V I, Zaanen J, Andersen O K 1991 Phys. Rev. B 44 943Google Scholar

    [30]

    Du Y L, Wang C L, Li J C, Xu P P, Zhang X H, Liu J, Su W B, Mei L M 2014 Chin. Phys. B 23 087302Google Scholar

    [31]

    Park S Y, Kumar A, Rabe K M 2017 Phys. Rev. Lett. 118 087602Google Scholar

    [32]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [33]

    Shein I R, Kozhevnikov V L, Ivanovskii A L 2008 Solid State Sci. 10 217Google Scholar

    [34]

    Chandra H K, Guo G Y 2017 Phys. Rev. B 95 134448

    [35]

    Shein I R, Ivanovskii A L 2007 Phys. Lett. A 371 155Google Scholar

    [36]

    Musa Saad H E M 2021 Bull. Mater. Sci. 44 1Google Scholar

    [37]

    Beltrán J I, Muñoz M C 2017 Phys. Rev. B 95 245120Google Scholar

    [38]

    Du Y L, Bu H X, Ji C J, Zhang X M, Li C L, Fang X N 2019 Phys. Chem. Chem. Phys. 21 18170Google Scholar

    [39]

    De Luca G M, Di Capua R, Di Gennaro E, Sambri A, Miletto Granozio F, Ghiringhelli G, Betto D, Piamonteze C, Brookes N B, Salluzzo M 2018 Phys. Rev. B 98 115143Google Scholar

    [40]

    Ye H S, Zhu Y J, Bai D M, Zhang J T, Wu X S, Wang J L 2021 Phys. Rev. B 103 035423Google Scholar

    [41]

    Yoshida T, Kobayashi M, Yoshimatsu K, Kumigashira H, Fujimori A 2016 J. Electron. Spectrosc. 208 11Google Scholar

    [42]

    Ma H J H, Zhou J, Yang M, Liu Y, Zeng S W, Zhou W X, Zhang L C, Venkatesan T, FengY P, Ariando A 2017 Phys. Rev. B 95 155314Google Scholar

    [43]

    Liu Z T Y, Podraza N J, Khare S V, Sarin P 2018 Comput. Mater. Sci. 144 139Google Scholar

    [44]

    Oshima M 2014 Appl. Sci. Converg. Technol. 23 317Google Scholar

    [45]

    Wang J, Gauquelin N, Huijben M, Verbeeck J, Rijnders G, Koster G 2020 Appl. Phys. Lett. 117 133105Google Scholar

  • [1] 姜舟, 蒋雪, 赵纪军. 二维kagome晶格过渡金属酞菁基异质结的电子性质. 物理学报, 2023, 72(24): 247502. doi: 10.7498/aps.72.20230921
    [2] 丁俊, 文黎巍, 李瑞雪, 张英. 铁电极化翻转对硅烯异质结中电子性质的调控. 物理学报, 2022, 71(17): 177303. doi: 10.7498/aps.71.20220815
    [3] 邓霖湄, 司君山, 吴绪才, 张卫兵. 过渡金属二硫化物/三卤化铬范德瓦耳斯异质结的反折叠能带. 物理学报, 2022, 71(14): 147101. doi: 10.7498/aps.71.20220326
    [4] 房晓南, 危芹, 隋娜娜, 孔志勇, 刘静, 杜颜伶. 间隔层调控SrVO3/SrTiO3超晶格铁磁半金属-铁磁绝缘体转变. 物理学报, 2022, 71(23): 237301. doi: 10.7498/aps.71.20221765
    [5] 李云, 鲁文建. 掺杂维度和浓度调控的δ掺杂的La:SrTiO3超晶格结构金属-绝缘体转变. 物理学报, 2021, 70(22): 227102. doi: 10.7498/aps.70.20210830
    [6] 龙慧, 胡建伟, 吴福根, 董华锋. 基于二维材料异质结可饱和吸收体的超快激光器. 物理学报, 2020, 69(18): 188102. doi: 10.7498/aps.69.20201235
    [7] 马浩浩, 张显斌, 魏旭艳, 曹佳萌. 非金属元素掺杂二硒化钨/石墨烯异质结对其肖特基调控的理论研究. 物理学报, 2020, 69(11): 117101. doi: 10.7498/aps.69.20200080
    [8] 焦媛媛, 孙建平, Prashant Shahi, 刘哲宏, 王铂森, 龙有文, 程金光. Pb掺杂对Cd2Ru2O7反常金属态的调控. 物理学报, 2018, 67(12): 127402. doi: 10.7498/aps.67.20180343
    [9] 王泽霖, 张振华, 赵喆, 邵瑞文, 隋曼龄. 电触发二氧化钒纳米线发生金属-绝缘体转变的机理. 物理学报, 2018, 67(17): 177201. doi: 10.7498/aps.67.20180835
    [10] 温家乐, 徐志成, 古宇, 郑冬琴, 钟伟荣. 异质结碳纳米管的热整流效率. 物理学报, 2015, 64(21): 216501. doi: 10.7498/aps.64.216501
    [11] 康海燕, 胡辉勇, 王斌, 宣荣喜, 宋建军, 赵晨栋, 许小仓. Si/Ge/Si异质横向SPiN二极管固态等离子体解析模型. 物理学报, 2015, 64(23): 238501. doi: 10.7498/aps.64.238501
    [12] 张伟英, 邬小鹏, 孙利杰, 林碧霞, 傅竹西. ZnO/Si异质结的光电转换特性研究. 物理学报, 2008, 57(7): 4471-4475. doi: 10.7498/aps.57.4471
    [13] 伍楷舜, 龙兴腾, 董建文, 陈弟虎, 汪河洲. 光子晶体异质结的位相和应用. 物理学报, 2008, 57(10): 6381-6385. doi: 10.7498/aps.57.6381
    [14] 关春颖, 苑立波. 六角蜂窝结构光子晶体异质结带隙特性研究. 物理学报, 2006, 55(3): 1244-1247. doi: 10.7498/aps.55.1244
    [15] 王 坤, 姚淑德, 侯利娜, 丁志博, 袁洪涛, 杜小龙, 薛其坤. 用卢瑟福背散射/沟道技术研究ZnO/Zn0.9Mg0.1O/ZnO异质结的弹性应变. 物理学报, 2006, 55(6): 2892-2896. doi: 10.7498/aps.55.2892
    [16] 刘江涛, 周云松, 王福合, 顾本源. 不同晶格光子晶体异质结的界面传导模. 物理学报, 2004, 53(6): 1845-1849. doi: 10.7498/aps.53.1845
    [17] 刘 红, 陈将伟. 纳米碳管异质结的结构及其电学性质. 物理学报, 2003, 52(3): 664-667. doi: 10.7498/aps.52.664
    [18] 封伟, 曹猛, 韦玮, 吴洪才, 万梅香, 吉野胜美. 有机聚合物受体给体复合体薄膜光伏电池性能研究. 物理学报, 2001, 50(6): 1157-1162. doi: 10.7498/aps.50.1157
    [19] 李国辉, 周世平, 徐得名. GaAs/AlGaAs异质结动力学行为研究. 物理学报, 2001, 50(8): 1567-1573. doi: 10.7498/aps.50.1567
    [20] 李书平, 王仁智, 郑永梅, 蔡淑惠, 何国敏. 平均键能方法在应变层异质结带阶研究中的应用. 物理学报, 2000, 49(8): 1441-1446. doi: 10.7498/aps.49.1441
计量
  • 文章访问数:  4284
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-06
  • 修回日期:  2022-05-10
  • 上网日期:  2022-09-13
  • 刊出日期:  2022-09-20

/

返回文章
返回